
DEFINED:
Deterministic Execution for

Interactive
Control-Plane Debugging

Chia-Chi Lin, Virajith Jalaparti, and
Matthew Caesar

University of Illinois at Urbana-Champaign
Jacobus Van der Merwe

University of Utah

6/28/2013 USENIX ATC '13 1

Control-Plane Software

•  Participates in routing protocols to
draw a network map

•  Responsible for 95-99% of the
observed bugs in today’s networks
(Altekar et al. Focus Replay Debugging Effort on the Control
Plane. HotDep ’10.)

6/28/2013 USENIX ATC '13 2

Automatic Control-Plane
Debugging

•  Builds models of control-plane
software to check for bugs and defects

•  Detects anomalies but does not
correct them

•  Eventually, requires developers to
understand and fix the bugs

6/28/2013 USENIX ATC '13 3

Today’s Solution: Interactive
Debugging with Logging

•  Records nondeterministic events to
enable deterministic replay

•  Two varieties:
– Comprehensive logging

•  Records everything
•  Able to reproduce everything
•  Doesn’t scale to today’s production networks

– Partial logging
•  Records partial information
•  Scales to large-scale networks
•  Unable to precisely reproduce execution

6/28/2013 USENIX ATC '13 4

DEFINED Goals

•  Reproducibility
– Precisely preserve execution without

comprehensive logging

•  Efficiency
– Maintain fast convergence time in

production networks

•  Usability
– Enable interactive control for debugging

•  Scalability
– Support enterprise and campus networks

6/28/2013 USENIX ATC '13 5

Interactive Debugging with
Deterministic Execution

•  Nondeterministic events in control-plane
software
– External events

•  E.g., routers or links go down

–  Internal events
•  E.g., routers exchange messages

(Bergan et al. Deterministic Process Groups in dOS. OSDI ’10.)

•  Logs only external events
•  Eliminates nondeterminism from

internal events

6/28/2013 USENIX ATC '13 6

DEFINED Overview

•  A library
•  Records external

events

•  Intercepts internal
message events

•  Provides
deterministic timer
APIs

6/28/2013 USENIX ATC '13 7

Network Node

Control-Plane
Software

Operating
System

DEFINED

DEFINED Algorithms

•  DEFINED-RB for production networks
– Designed for efficiency
–  Implements speculative execution with

RollBacks

•  DEFINED-LS for debugging networks
– Designed for interactive control

– Steps through network execution with a
LockStep algorithm

6/28/2013 USENIX ATC '13 8

Outline

•  DEFINED-RB in Production Networks

•  DEFINED-LS in Debugging Networks

•  Evaluation

•  Conclusion

6/28/2013 USENIX ATC '13 9

Interfacing with Production
Networks

•  Each network node independently
determines an ordering function to
order internal events

•  If events execute in the “wrong” order,
DEFINED-RB rolls back the state of
the network node and replays events
in the “correct” order

6/28/2013 USENIX ATC '13 10

DEFINED-RB

Rolling Back Software States

6/28/2013 USENIX ATC '13 11

Control-
Plane

Software

Control-
Plane

Software

Control-
Plane

Software

Shared
Memory

Shared
Memory

Ordering Internal Events with
Logical Timestamps

•  One network node periodically
broadcast logical timestamps

•  Each node records external events in
logical time

•  Each node tags and orders internal
messages with logical timestamps and
fires timers in logical time

6/28/2013 USENIX ATC '13 12

Cascading Rollbacks Within a
Logical Time Unit

6/28/2013 USENIX ATC '13 13

Order before

Optimized Ordering Function with
Latency Information

6/28/2013 USENIX ATC '13 14

2

2

1
1

2

1

3
2

2 +3

1

< 32

Stepping through Debugging
Networks

•  DEFINED-LS divides network
execution into logical steps

•  Each step has two phases
– Transmission phase

•  Each network node sends messages to
neighboring nodes

– Processing phase
•  Each network node processes its internal

events

6/28/2013 USENIX ATC '13 15

A Step in DEFINED-LS

6/28/2013 USENIX ATC '13 16

Control-Plane Software

DEFINED-LS

Transmission PhaseProcessing Phase

Centralized Coordinator for
Interactive Stepping

•  Coordinates phase transitions among
network nodes

•  Allows developers to issue a “step”
command

•  Steps may be chosen at various levels
of granularity (per-event or per-
logical-time-unit)

6/28/2013 USENIX ATC '13 17

Evaluation Methodology

•  Software: XORP OSPF 1.6
•  Environment: Emulab

•  Topology: Rocketfuel and BRITE
(we present results from the Rocketfuel Sprintlink topology)

•  Traces: 2 weeks of Tier-1 ISP area 0
OSPF traces
(324 network nodes and 651 events)

6/28/2013 USENIX ATC '13 18

DEFINED-RB Performance

6/28/2013 USENIX ATC '13 19

99% of the updates are
comparable to XORP

DEFINED-LS Performance

6/28/2013 USENIX ATC '13 20

Every step command
completes in less
than 1 second

DEFINED-RB Scalability

6/28/2013 USENIX ATC '13 21

Optimized Ordering
reduces the convergence
time by 1.35 seconds
Optimized Ordering
adds only 0.73 seconds
to the convergence time

DEFINED-LS Scalability

6/28/2013 USENIX ATC '13 22

A step command
completes in less than
0.8 seconds on average

Conclusion

•  A debugger for control-plane software
•  Uses deterministic execution to avoid

logging internal nondeterminism
•  Implements speculative execution to

maintain efficiency in production
networks

•  Leverages a lockstep algorithm to
provide interactive control in
debugging networks

6/28/2013 USENIX ATC '13 23

THANK YOU

6/28/2013 USENIX ATC '13 24

