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Control-Plane Software

•  Participates in routing protocols to 
draw a network map 

•  Responsible for 95-99% of the 
observed bugs in today’s networks 
(Altekar et al. Focus Replay Debugging Effort on the Control 
Plane. HotDep ’10.) 
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Automatic Control-Plane 
Debugging

•  Builds models of control-plane 
software to check for bugs and defects 

•  Detects anomalies but does not 
correct them 

•  Eventually, requires developers to 
understand and fix the bugs 
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Today’s Solution: Interactive 
Debugging with Logging

•  Records nondeterministic events to 
enable deterministic replay 

•  Two varieties: 
– Comprehensive logging 

•  Records everything 
•  Able to reproduce everything 
•  Doesn’t scale to today’s production networks 

– Partial logging 
•  Records partial information 
•  Scales to large-scale networks 
•  Unable to precisely reproduce execution
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DEFINED Goals

•  Reproducibility 
– Precisely preserve execution without 

comprehensive logging 

•  Efficiency 
– Maintain fast convergence time in 

production networks 

•  Usability 
– Enable interactive control for debugging 

•  Scalability 
– Support enterprise and campus networks 
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Interactive Debugging with 
Deterministic Execution

•  Nondeterministic events in control-plane 
software 
– External events 

•  E.g., routers or links go down 

–  Internal events 
•  E.g., routers exchange messages 

(Bergan et al. Deterministic Process Groups in dOS. OSDI ’10.) 

•  Logs only external events 
•  Eliminates nondeterminism from 

internal events
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DEFINED Overview

•  A library 
•  Records external 

events 

•  Intercepts internal 
message events 

•  Provides 
deterministic timer 
APIs 
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DEFINED Algorithms

•  DEFINED-RB for production networks 
– Designed for efficiency 
–  Implements speculative execution with 

RollBacks 

•  DEFINED-LS for debugging networks 
– Designed for interactive control 

– Steps through network execution with a 
LockStep algorithm
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Outline

•  DEFINED-RB in Production Networks 

•  DEFINED-LS in Debugging Networks 

•  Evaluation 

•  Conclusion
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Interfacing with Production 
Networks

•  Each network node independently 
determines an ordering function to 
order internal events 

•  If events execute in the “wrong” order, 
DEFINED-RB rolls back the state of 
the network node and replays events 
in the “correct” order
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DEFINED-RB

Rolling Back Software States
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Ordering Internal Events with 
Logical Timestamps

•  One network node periodically 
broadcast logical timestamps 

•  Each node records external events in 
logical time 

•  Each node tags and orders internal 
messages with logical timestamps and 
fires timers in logical time
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Cascading Rollbacks Within a 
Logical Time Unit
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Optimized Ordering Function with 
Latency Information
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Stepping through Debugging 
Networks

•  DEFINED-LS divides network 
execution into logical steps 

•  Each step has two phases 
– Transmission phase 

•  Each network node sends messages to 
neighboring nodes 

– Processing phase 
•  Each network node processes its internal 

events
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A Step in DEFINED-LS
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Centralized Coordinator for 
Interactive Stepping

•  Coordinates phase transitions among 
network nodes 

•  Allows developers to issue a “step” 
command 

•  Steps may be chosen at various levels 
of granularity (per-event or per-
logical-time-unit) 
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Evaluation Methodology

•  Software: XORP OSPF 1.6 
•  Environment: Emulab 

•  Topology: Rocketfuel and BRITE       
(we present results from the Rocketfuel Sprintlink topology) 

•  Traces: 2 weeks of Tier-1 ISP area 0 
OSPF traces                                     
(324 network nodes and 651 events)

6/28/2013 USENIX ATC '13 18 



DEFINED-RB Performance

6/28/2013 USENIX ATC '13 19 

99% of the updates are 
comparable to XORP



DEFINED-LS Performance
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Every step command 
completes in less 
than 1 second



DEFINED-RB Scalability
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Optimized Ordering 
reduces the convergence 
time by 1.35 seconds
Optimized Ordering 
adds only 0.73 seconds 
to the convergence time



DEFINED-LS Scalability
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A step command 
completes in less than 
0.8 seconds on average



Conclusion

•  A debugger for control-plane software 
•  Uses deterministic execution to avoid 

logging internal nondeterminism 
•  Implements speculative execution to 

maintain efficiency in production 
networks 

•  Leverages a lockstep algorithm to 
provide interactive control in 
debugging networks 
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THANK YOU
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