Online Resource Management for Data Center with *Energy Capping*

Hasan Mahmud and Shaolei Ren

Florida International University

A massive data center

Facebook's data center in Prineville, OR

Three pieces of old news

- 2005: EU introduced carbon emission caps to large energy consumers
 - "Cap and trade": if cap exhausted, then buy more credits
- **2007:** eBay paid \$79K fine to Sacramento, CA, for using generators and polluting air
- 2011: Microsoft faced \$210K penalty from Quincy, WA, utilities for overestimating its energy usage – Waived!

News!

• **2013:** China to impose carbon targets by 2016

Courtesy of The Independent

Energy cap!

- There is an *energy cap*
 - Penalty for exceeding the cap
 - Stricter energy caps are anticipated in light of the increasingly serious sustainability concerns
- In order to satisfy the cap, data centers need to carefully use their energy quota

Energy cap!

- There is an *energy cap*
 - Penalty for exceeding the cap
 - Stricter energy caps are anticipated in light of the increasingly serious sustainability concerns
- In order to satisfy the cap, data centers need to carefully use their energy quota

Energy budgeting

Power v.s. Energy

- Power budgeting
 - Peak power is costly to increase and hence often oversubscribed
 - Maximize performance given peak power constraint [1][2]

[1] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in server farms. In ACM Sigmetrics, 2009.
[2] H. Lim, A. Kansal, and J. Liu. Power budgeting for virtualized data centers. In USENIX ATC, 2011.

Power v.s. Energy

- Power budgeting
 - Peak power is costly to increase and hence often oversubscribed
 - Maximize performance given peak power constraint [1][2]

[1] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in server farms. In ACM Sigmetrics, 2009.
[2] H. Lim, A. Kansal, and J. Liu. Power budgeting for virtualized data centers. In USENIX ATC, 2011.

Solution

- Turn on as few servers as possible to satisfy QoS
 - But, what should be the energy cap?
 - "Energy oversubscription"
 - Like what Microsoft did for its Quincy, WA, data center
 - Clearly, *not good* for power utilities

Another solution

- Plan everything ahead, assuming that we know everything about the future (e.g., workloads, renewables, etc.) [3]
 - How can we accurately predict the future?
 - Hour-ahead or day-ahead traffic/renewables prediction may be good, but month-ahead or even season-ahead predictions may *NOT* be!

[3] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi. Capping the brown energy consumption of internet services at low cost. In IGCC, 2010.

Our proposal

• Realizing...

Long-term prediction may not be accurate

 Why not just give a rough estimate in advance and then try to follow your target *online*?

<u>Challenge</u>

 We have long-term target, but we only have shortterm information

Our proposal

• Realizing...

Long-term prediction may not be accurate

 Why not just give a rough estimate in advance and then try to follow your target *online*?

<u>Challenge</u>

 We have long-term target, but we only have shortterm information

Do it by tracking your energy usage online!

Model

- Time-slotted model
- Data center has *M* homogeneous servers
 - On-site renewable energy available
 - Capacity provisioning decisions are made at the beginning of each time slot
 - Service process at each server is modeled by a FIFO queue

Objectives

- Electricity bill
 - Reduced by using fewer servers
- QoS
 - Response time
 - QoS can be increased by using more servers

Cost savings versus user experiences

Formulation

- Costs
 - Electricity cost: $e(\lambda, m)$ - Delay cost: $d(\lambda, m)$
- Total cost is given by

 $g\big(\lambda(t),m(t)\big)=e\big(\lambda(t),m(t)\big)+\beta\cdot d\big(\lambda(t),m(t)\big)$

• Energy capping target

$$\frac{1}{K} \sum_{t=0}^{K-1} \left[p(\lambda(t), m(t)) - r(t) \right]^+ \leq \frac{\mathbb{Z}}{K}$$

- r(t) is the available on-site renewables

Online resource management

Construct an energy deficit queue

$$q(t+1) = \left\{ q(t) + \left[p(\lambda(t), m(t)) - r(t) \right]^{+} - z \right\}^{+}$$

Queue length indicate the energy budget deficit

- Instead of minimizing the cost, minimize the following $V \cdot g(\lambda(t), m(t)) + q(t) \cdot [p(\lambda(t), m(t)) - r(t)]^+$
 - Queue length gives additional weight on electricity usage
 - Larger queue means: more energy is used than allowed budget
 - Insight: if exceeds, then reduce!

Algorithm analysis

• Prove the following two facts

Good cost compared to the optimal offline algorithm with future information

- Approximately satisfy energy capping

Proof technique

- Recently-developed Lyapunov optimization
- Relax i.i.d./Markovian assumptions to arbitrary dynamics

Algorithm analysis

- Prove the following two facts
 - *Good* cost compared to the optimal offline algorithm with future information
 - Approximately satisfy energy capping
- Proof technique
 - Recently-developed Lyapunov optimization
 - Relax i.i.d./Markovian assumptions to arbitrary dynamics

Case study

Simulation

- 50MW data center
- 6-month energy budgeting
- Hour-ahead prediction

Simulation

Achieving low cost while satisfying budget!

Comparison

- Prediction-based:
 - Predict the next-day workload perfectly and allocate the daily energy budget in proportion to the hourly workloads
- 9% cost reduction only using hour-ahead prediction!!

Impact of energy budget

- Average cost of ORM increases when the energy budget decreases
- With 90% energy budget, average cost ORM only exceeds by approximately 3%

Impact of energy budget

Increasing the operational cost marginally but reduce energy significantly

Conclusion

• ORM is a provably-efficient online energy budgeting algorithm using only short-term prediction (e.g., hour-ahead)

Conclusion

Budgeting energy for sustainability!

Thanks!