
Jigsaw: Efficient, Low-
effort Mashup Isolation

James Mickens and Matthew Finifter
 Microsoft Research UC Berkeley

The joy of creating a new webapp

Mashup Security

● Isolate third-party code

● Control what you share with it

● And make it easy for developers!

Talk Outline
● Previous approaches

● Goals

● Design

● Implementation

● Evaluation

Previous approaches: do nothing

+ Ease of development

- Zero isolation

Previous approaches: iframes plus
postMessage

+ Standardized
+ Strong isolation
+ Simple string-based programming model

- Asynchronous programming model
- Need to layer on top of postMessage
- Performance overhead of object marshaling

Previous approaches: mashup
isolation framework

Caja, Object Views, ConScript, ...

+ Built with security in mind

- Policies tend to be complex
- Varying performance and compatibility
 implications

Goals
● Isolation by default

● Simplicity

● Efficient, synchronous sharing

● Fail-safe legacy code

Design: terminology
● Principal is an

instance of content
● May include HTML,

CSS, JS
● Top-level is integrator
● Each principal is

placed in a box, the
unit of isolation

What's in a box?
● JavaScript namespace
● DOM tree
● Event loop
● Visual region
● Network connection
● Local storage area

box != iframe
● Same-origin boxes isolated by default

○ Enables fault isolation, privilege separation

● Box permissions nest
○ e.g., monotonically decreasing network permission

● Synchronous communication

The horror of asynchrony
● N items to process with external library

function process(data, i) {
 if (i < N) {
 externalLibrary.process(data[i],
 function(result) {

processed[i] = result
process(data, i+1)

 }
)
 }
}
process(data, 0)

for i in 0 .. N-1
 processed[i] =
 externalLibrary.process(data[i])

Design: principal objects
● Each principal has a principal object

○ Defines the public interface
● Jigsaw.getParentPrincipal()
● Jigsaw.principals

Design: DOM tree and visual field
● Each box can have a DOM tree and

associated visual field.
● Visual field: width, height, location (within

parent), z-order
● Granted using CSS-style syntax
● Parent can change child visual field
● Child changes validated by parent

Design: network access
● Granted from parent to child
● Specified as a whitelist of accessible

domains
● Wildcards allowed

○ e.g., *.foo.com or cache.*.bar.com
● Monotonically decreasing

Design: JavaScript namespace
● public/private visibility modifiers
● Define the subset of an object graph that

crosses an isolation boundary
● private by default

Principal X passes
{public p: "foo",
 private q: "bar"}

to principal Y

Principal Y sees
{p: "foo"}

Design: Surrogate objects
● Surrogate objects enforce private/public
● Jigsaw passes surrogate, not raw object,

between boxes
○ Initially empty object, with public properties added

● Getter for public p of obj returns
createSurrogate(obj.p)

● Setter for public p of obj executes
obj.p = createSurrogate(newVal)

Design summary
● Isolation by default using boxes
● Principal object defines interface
● Only public properties traverse box

boundary
● Resources (e.g., network, visual field)

granted by parent to child

Implementation
● Jigsaw-to-JavaScript compiler

○ Translate private/public keywords into operations on
per-object visibility metadata map

○ Adds calls to create surrogates
○ Maintain object ids and box ids

● Client-side JavaScript library
○ Defines management interface (e.g., Jigsaw.
createBox())

○ evals box code in context with redefined globals
○ Redefined globals implement security checks

● Current prototype implements most (but not
all) of the design

Evaluation: porting effort
● Many libraries already have a de facto

principal object -- mark it as such
● Mark properties as public where appropriate
● Use a modified runtime to log private objects

crossing boundaries, instead of disallowing
them

● No explicit sanitization necessary

Evaluation: performance

Evaluation: performance

Related work
● ADsafe
● FBJS
● Dojo Secure
● Caja
● Secure ECMAScript
● PostMash
● Object Views
● ConScript

Conclusion
● Jigsaw: a new mashup isolation framework
● Policies are simple to write

○ public/private objects
○ high-level browser resources

● Synchronous programming model
● Automatic surrogates

Thank you

Matthew Finifter
finifter@cs.berkeley.edu

James Mickens
mickens@microsoft.com

