A

»
A\
i\

\
NN o
F e W
¥ W\ \ '\
S
/fiJ .

»
N\

S\
S

w
AN
N

Queues don’t matter
when you can JUMP them

Matthew P. Grosvenor

2B UNIVERSITY OF
<¥ CAMBRIDGE

http://google.com/datacenters

Context :

Datacenter Networks

http://google.com/datacenters

Context 3

Datacenter Networks

- Commodity hardware

http://google.com/datacenters

Context :

Datacenter Networks
- Commodity hardware

- Static network topology

http://google.com/datacenters

Context __ 5

Datacenter Networks
- Commodity hardware
- Static network topology

- Single administrative domaln '

http://google.com/datacenters

Context __ 6

Datacenter Networks
- Commodity hardware
- Static network topology
- Single administrative domaln :

-Some level of cooperation

http://google.com/datacenters

Context _ 7

Datacenter Networks

- Commodity hardware

- Static network topology

a 1 -
» J .
- - ™
[- \ ~ i
[S - - —{ - o)
L 3 st
Yo N
p— > L
-

- Single administrative domain -

==

R ey

-Some level of cooperation

- Statistically Multiplexed

http://google.com/datacenters

Context 8

Datacenter Networks
- Commodity hardware
- Static network topology
- Single administrative domaln "

-Some level of cooperation

http://google.com/datacenters

Context :

- Stai] 6
- \3‘

http://google.com/datacenters

Appllcatlon |mpact T
NN o™ A 4@ ‘,%‘

3

.........

~—= © 2015 Malcolm Scott

— PTPd offset

1200 |~ jdle network -

250 300 350
Time since start [sec]

PTP sync offset: close to zero = good

— PTPdoffset —— memcached avg. latency

memcached latency: lower = good

1200 | jdle network

250 300 350
Time since start [sec]

PTP sync offset: close to zero = good

— PTPdoffset —— memcached avg. latency

memcached latency: higher = bad

1200 T -
. 800 _
)
= 400 =
GE) JMVWA\,,—MAM
E op=—" - I foanneo

150 1200 250 300 350
Time since start [sec]

PTP sync offset: away from zero = bad

Network Interference

l Hadoop
memcached

| PTPd

Switch

Network Interference

Queuing caused by Hadoop

l Hadoop

memcached
B - | PTPd
HHE
—_—p

Switch

Network Interference

Queuing caused by Hadoop

l Hadoop
memcached

I I I | PTPd

i
s
gl

Delaying traffic from PTPd
and memcached

Switch

Network Interference:

Congestion from one
application causes queuing
that delays traffic from
another™ application.

*possibly related

Solving network interference? -

Borrow some old ideas

Packet by Packet Generalised Processor
Sharing (PGPS)

(Weighted) Fair Queuing (WFQ)

Differentiated Service Classes (diff-serv)

Parekh-Gallager Theorem

Solving network interference? =

Borrow some old ideas

Packet by Packet Generalised Processor
Sharing (PGPS)

(Weighted) Fair Queuing (WFQ)

Differentiated Service Classes (diff-serv)

Parekh-Gallager Theorem

Apply in a new context : Datacenters

Datacenter Opportun

i

A1

Ead) 30T

R u.n» b e® se9PP
0000000'009"00""00!

3
)
‘ 5
A ' : dﬁkt)f’.bvto
'
-.pﬂr vvrro.uOM): senenes
A 2 \. -1

Opportunities & Constraints =

Datacenter Opportunities =

- Static network
- Single admin domam

- Cooperat on

s ’ - .

ks <

S [o
34

y *
. » -
| - o8 o 204

Opportunities & Constraints =

Datacenter Opportunities =

= - Static network
- Single admin domain
—Cooperat on

3 D?P|0¥abi|ity C.onstra“ints; _ =T o

% - = ' \\ . > " R E 3 > = - o~ 8 E dw ‘_'l.f i_‘
\ 5 B —_— : A e P = | ‘
b 9 - (s) - . . : - s 3! 3
% . . e - - RS n . 3r— g ’ ‘
- -~ 3
LN - s - - o ﬂ
o - - . * > ; ‘
% . N R »‘
= g Y ", - . - ;.

Opportunities & Constraints =

Datacenter Opportunities =

= - Static network
- Single admin domain
—Cooperat on

Deployablllty Constraints

Unmodﬂed‘apphcatlons = ;
- Unmodified kernel COde —
—Commodlty hardware *»

Switch

Switch

Switch

Switch

Switch

Understanding delays

Delay type Il - Servicing Delay (Ds)

Switch

Understanding delays

Switch

Understanding delays

Servicing delay causes queuing delay

Dq
e —

Switch

Eliminating Queuing Delay -

Switch

Eliminating Queuing Delay =

Switch

Rate-Limiting

't we can find a bound for
servicing delay, we can rate-
[ImIit hosts so that they never
experience queuing adelay

36

Assume sending
hosts n=4

Switch

Calculating Service Delay -

Assume sending
hosts n=4

° Assume edge
—> speed

3 —i R = 10Gb/s

4 >

Switch

Calculating Service Delay -

Assume sending
hosts n=4

° Assume edge
—> Speed

3 — R = 10Gb/s

4 >

Assume packet
size P =1500B Switch

39

Assume sending | ¢ | De';}/RPer packet

hosts n =4
........ = 1500B / 10Gb/s
1T > =1.5 us
2 24 Assume edge
n—> speed
3 —i R = 10Gb/s

Assume packet
size P = 1500B Switch

Calculating Service Delay -

Assume sending Delay per packet

hosts n = 4 = P/R

- = 1500B / 10Gb/s
1T —— = 1.5 s
2 24 Assume edge

n—> speed
53— R = 10Gb/s
4 — Total delay
= h X per packet

Assume packet =4 x 1.5 s

size P = 1500B Switch =6 us

Calculating Servicing Delay -

P
servicing adelay =n X —
R

Calculating Servicing Delay -

P
servicing aelay”™ =n X —
R

Where

n - number of hosts
P - bytes sent
R - edge speed

*Assuming a fair scheduler

Calculating Servicing Delay -

network™ P

servicing delay”™ =n X —
R

Where

n - number of hosts
P - bytes sent
R - edge speed

*Assuming a fair scheduler
“*Apply hose constraint model

Rate-Limiting

1. Network is idle
2. Hosts send = P bytes
3. Wait(nx P/ R) secs

4. Goto 1

Network
Epoch

Epoch Epoch

4 packets

Epoch Epoch

4 packets

~ 8 packets per
epoch

Eliminating Synchronization -

P
network epoch = 2n X —

2

Where

n - number of hosts

P - bytes sent

R - edge speed

2 - mesochronous compensation

<p The dark side of network epoch -

R
throughput = —

2N

Where

n is the number of hosts
R is the edge speed

<y The dark side of network epoch -

10GDb/s

throughput = —
2 X 1000

Where

n = 1000 hosts
R =10 Gb/s

<y The dark side of network epoch «

10GDb/s

throughput” = —
2 X 1000

Where

n = 1000 hosts
R =10 Gb/s

solution:
assume there iIs
no problem?

47

i A

Which assumption?

47

i A

Rate [Imit

0 10G
low throughput

Which assumption?

47

A,

Rate limit Latency Distribution

0 10G Secs

low throughput guaranteed latency

Rate [imit

0 10G

line rate throughput

Rate [imit Latency Distribution

0 10G SECS
no latency guarantee

line rate throughput

QJump with priorities

> Low latency
.’
—_—)
.’
.’

High priority
Low rate-limit

Medium Latency

- Low latency
- = >
—_—
- = >
- = >

Medium priority
Medium rate-limit

B High Throughput
Medium Latency

“'.'I' -7 Low latency

Low priority
No rate-limit

—High Throughput

Medium Latency
Low latency

QJump with priorities

B High Throughput
Medium Latency

l Low latency

Queues don’t matter when you can Jump them!

Prioritization

Use hardware priorities to run
different QJump levels
together, but isolated™ from
each other.

* from layers below

Implementation

| long epoch_cycles = to_cycles(network_epoch);
> long timeout = start_time;
3 long bucket [NUM_QJUMP_LEVELS] ;

5 int qJumpRateLimiter(struct sk_buff* buffer) {

6 long cycles_now = asm("rdtsc"); /* read cycle ctr */
7 int level = buffer->priority;

s if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;

10 bucket [level] = tokens[levell];

i}

2 if (buffer->len > bucket[level]) {

13 return DROP; /* tokens for epoch ezhausted */
14 }

15 bucket[level] -= buffer->len;

16 sendToHWQueue(buffer, level);
17 return SENT;

ong bucke

5 int qJumpRateLimiter(struct sk_buff* buffer) {

long cycles_now = asm("rdtsc"); /* read cycle ctr */
int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */
timeout += epoch_cycles;
bucket [level] = tokens[levell];
}
if (buffer->len > bucket[level]) {
return DROP; /* tokens for epoch ezhausted */
}
bucket [level] -= buffer->len;
sendToHWQueue (buffer, level);
return SENT;

ong bucke

— -— J

4

~36 cycles / packet

7 int level = buffer->priority;
s if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;

10 bucket [level] = tokens[levell];

i}

2 if (buffer->len > bucket[level]) {

13 return DROP; /* tokens for epoch ezhausted */
14 }

15 bucket[level] -= buffer->len;

16 sendToHWQueue(buffer, level);
17 return SENT;

3 Iong !uc!e!|lll_lligﬂ_;!;E;!I;

4

Implementation

~36 cycles / packet

7

11
12
13
14
15
16
17

18

int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */

Smart Buffer Sizing

+
if (buffer->len > bucket[level]) {

return DROP; /* tokens for epoch ezhausted */
}
bucket [level] -= buffer->len;
sendToHWQueue (buffer, level);
return SENT;

Implementation

~36 cycles / packet

int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */

Smart Buffer Sizing

Unmodified Applications
bucket [level] -= buffer->len;

sendToHWQueue (buffer, level);
return SENT;

}

Implementation

~36 cycles / packet

int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */

Smart Buffer Sizing

Unmodified Applications

bucket [level] -= buffer->len;

802.1 Q

150 200 250 300 350
Time since start [seC]

I I I I
150 200 250 300 350
Time since start [seC]

Normalized RMS app. metric

S
o U1 O

O—L—L
or O O1

6(5 | —
S
;4—

— Hadoop — PTPd sync. —

memcached
req. latency

runtime offset
I

good = close to 1

Normalized RMS app. metric

T i
O U1 O U1 O

0.5

— Hadoop — PTPd sync. —

runtime offset

memcached
req. latency

Normalized RMS app. metric

S
o U1 O

OO_L_L
O O1r O O1

— Hadoop — PTPd sync. —

runtime offset

memcached
req. latency

Normalized RMS app. metric

S
o U1 O

OO_L_L
O O1r O O1

— Hadoop — PTPd sync. —

runtime offset

memcached
req. latency

Normalized RMS app. metric

NN W
O O1 O

OO O -
O O1 O Ol

— Hadoop — PTPd sync. —

memcached

runtime offset req. latency
| | | |
~ good .
ed . 3ed D) ?
\d " 0(\\62\\\‘\;\0 LN K\\\\\?\‘3 oCt

Normalized RMS app. metric

S
o U1 O

OO_L_L
O O1r O O1

— Hadoop — PTPd sync. —

runtime

memcached

offset req. latency

cov

good

I
o0

l

exn. F°

.
A%

\dea\ ,&e(\ded

o

X

*currently requires kernel patch

— Hadoop — PTPd sync. — memcached

o - lat
5 3.0 | runtm:loe offset | IreO| aerlmy
o 29 good)
© 2.0 _
%
2 1.0 -
N
&
o 0.0 \ z
< o\ \ * \’s

\O€ _e(\de W cn 360\ < C? 0‘\\)\\“

GO e PO T 00

*currently requires kernel patch

Normalized RMS app. metric

S
o U1 O

OO_L_L
O O1r O O1

Hadoop PTPd sync.
]] offset]

runtime

memcached
req. latency

good

l

\ d
\ae? | noe

o0

\O

.
A%

o

X

*currently requires kernel patch

Conclusions =

‘QJump applies datacenter S|mpI|f|cat|ons
" to QoS rate calculations.

!1

Conclusions

QJump applies datacenter simplifications
to QoS rate calculations.

—

It provides service levels ranging from

f Y _ through to line-rate
throughput 1 5L Fns ——— 4

b
.

!

93

Conclusions =

_ QJump applies datacenter opportunities to
= simplity QoS rate calculations.

o —

It provides service levels ranging from
guaranteed \atency through to lINne- rate

trroughput — RS L —— e

: - :
. ¥ - 3
b .
H3 3
- 3
4 -
- :
4 3
2

It caq be deployed usmg
; 1o apphcatmns kernel

code or hardware

ant to know more?

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor
Andrew W. Moore

Malte Schwarzkopf
Steven Hand'

Ionel Gog Robert N. M. Watson
Jon Crowcroft

University of Cambridge Computer Laboratory
' now at Google, Inc.

Abstract

QJUMP is a simple and immediately deployable ap-
proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications
To mitigate network interference, QJUMP applies Inter-
net QoS-inspired techniques o datacenter applications.
Each application is assigned to a latency sensitivity level
(or class). Packets from higher levels are rate-limited
in the end host, but once allowed into the network can
“jump-the-quene” over packets from lower levels, In set-
tings with known node counts and link speeds, QJump
can support service levels ranging from strictly bounded
latency (but with low rate) through to line-rate through-
put (but with high latency vanance).

We have implemented QJuMP as a Linux Traffic Con-
trol module. We show that QJuMP achieves bounded
latency and reduces in-network interference by up to
300x, outperforming Ethernet Flow Coatrol (802.3x),
ECN (WRED) and DCTCP. We also show that QJump
improves average flow completion times, performing
close to or better than DCTCP and pFabnic.

1 Introduction

Many datacenter applications are sensitive to tail la-
tencies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]). This has a tangible impact on user engage-
ment and thus potential revenue [8, 9.

One source of latency tails is nerwork interfer-

amems monmonetionn feoam themsahmdt intancivn anmliaanane

cause queveing that extends memcached request latency

tails by 85 times the interference-free maximum (§2).

If memcached packets can somehow be priontized to
“jump-the-queue”™ over Hadoop's packets, memcached
will no longer experience latency tails due to Hadoop. Of
course, multiple instances of memcached may still inter-
fere with each other, causing long queues or incast col-
lapse [10]. If each memcached instance can be appropri-
ately rate-limited at the origin, this too can be mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Intemet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single au-
thority. In this environment, we can enforce system-wide
policies, and calculate specific rate-limits which take into
account worst-case behavior, ultimately allowing us to
provide a guaranteed bound on network latency.

QJuMP implements these concepts in a minimal rate-
limiting Linux kemel module and application utility.
QJump has four key features. [t

1. resolves network interference for latency-sensitive

applications without sacrificing utilization for
throughput-intensive applications;

. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring

no changes to hardware or application code; and

4 nerforms close to or hetter than comnetine svs.

[]

Want to know more?

99" %
126us
130us

Setup | 50" %
one host, 1dle network 85
two hosts. shared switch 110

u can JUMP them!

shared source host, shared egress port 228 268us
. ") Ionel Gog Robert N. M. Watson
shared dest. host, shared ingress port 125 278US ¢ Jon Croweroft
shared host, shared ingress and egress 221 220uS wter Laboratory

two hosts, shared switch queue 1,920 | 2,100us

Abstract

QJUMP is a simple and immediately deployable ap-
proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications.
To mitigate network interference, QJUMP applies Inter-
net QoS-inspired techniques to datacenter applications.
Each application is assigned to a latency sensitivity level
(or class). Packets from higher levels are rate-limited
in the end host, but once allowed into the network can
“jump-the-queue” over packets from lower levels, In set-
tings with known node counts and link speeds, QJump
can support service levels ranging from strictly bounded
latency (but with low rate) through to line-rate through-
put (but with high latency vanance).

We have implemented QJuMP as a Linux Traffic Con-
trol module. We show that QJuMP achieves bounded
latency and reduces in-network interference by up to
300x, outperforming Ethernet Flow Coatrol (802.3x),
ECN (WRED) and DCTCP. We also show that QJump
improves average flow completion times, performing
close to or better than DCTCP and pFabnic.

1 Introduction

Many datacenter applications are sensitive to tail la-
tencies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]). This has a tangible impact on user engage-
ment and thus potential revenue [8, 9.

One source of latency tails is nerwork interfer-

amems monmonetionn feoam themsahmdt intancivn anmliaanane

cause queveing that extends memcached request latency

tails by 85 times the interference-free maximum (§2).

If memcached packets can somehow be priontized to
“jump-the-queue”™ over Hadoop's packets, memcached
will no longer experience latency tails due to Hadoop. Of
course, multiple instances of memcached may still inter-
fere with each other, causing long queues or incast col-
lapse [10]. If each memcached instance can be appropri-
ately rate-limited at the origin, this too can be mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Intemet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single au-
thority. In this environment, we can enforce system-wide
policies, and calculate specific rate-limits which take into
account worst-case behavior, ultimately allowing us to
provide a guaranteed bound on network latency.

QJuMP implements these concepts in a minimal rate-
limiting Linux kemel module and application utility.
QJump has four key features. [t

1. resolves network interference for latency-sensitive

applications without sacrificing utilization for
throughput-intensive applications;

. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring

no changes to hardware or application code; and

4 nerforms close to or hetter than comnetine svs.

[]

0.8

Setup | 50" % 99thaz,

one host, 1dle network 85 126us

two hosts, shared switch 110 130us

shared source host, shared egress port 228 268us
shared dest. host, shared ingress port 125 278us
shared host, shared ingress and egress 221 229us

two hosts, shared switch queue

1,920

2,100ps

" 0.6
' 0.4
0.2

1.0
0.8
0.6
0.4
0.2
0.0

’
1/ |

Abstract

QJUMP is a simple and immediately deployable ap-
proach to controlling network interference in datacenter
networks. Network interference occurs when congestion

jueueing
ications
es Inter-

—— alone
— - + Hadoop
+ Had. w/ QJ

ications
ity level
-limited
vork can
s, In set-

QJume
bounded
through-

ffic Con-
bounded
Iy up to

—1 802.3x),

QJump
forming

> tail la-
000 is a

0

500

1000

1500 2000

Latency in us

high la-
engage-

interfer-
hrntsmnme

cause qu
tails by
If me
“Jjump-t
willno |l
course, |
fere witl
lapse 11
ately ratc
Thest -

DiffSer
tion and 1

tencies.
ment, a

ever, ur
network O 8

thority.

policies
account O 6

ap|

thr

2. off
lov 0_2

provide
col

QJuy
limiting
QJump
. 15
no

4 ne O . O

1. res

0
0

alone
+ Hadoop |
+ Had. w/ QJ

I
500

“HIRGU @ UG USRI, SRS WO G mnu

1000

1500 2000

Latency in us

]
|
’

I

I
I

’

[

)
I
I
I
I
I
]
’
’

r I

+ iperf w/ QJ

/
/

/
/

1 ~ | I

[’

‘ — alone /
— = +iperf /

0

1

2

3

4 5 300 600 9001200

Setup | 50" % 99thaz, 08 | _
one host, idle network 85 126us
two hosts, shared switch 110 [30us v 06 F —
shared source host, shared egress port 228 268us
shared dest. host, shared ingress port 125 278us 4 | _
| St 1055, STATEC INSIESS P s 04 —— alone
shared host, shared ingress a ~ —
two hosts, shared switt 200 I B =L B Hadoop _
<, 150 + Had. w/ QJ
5 <«— best tradeoff 1] |
£ 100 -
S o 1000 1500 2000
o &1 Throughput 7 .
1.0 _ £ 0 | | ency In usS
S 1s =X Max. latency
20
2 100ms 99%ile latency
0.8 - > 10ms 3¢ [[[7
S 1ms —— alone /
u © 100us .
>0 S ione e [T et e
04 Rate limit [Gb/s] —+ +ipertw/QJ - _
forming Qo 1 l
02 | - + Hadoop _ E'J']Jt:fo 4 L h 1 | _
. 1. res] [
+Had.w/QJ | ‘
0.0 l' = I I I (:ilg)hi:: 2. ;:f: 0.2 | :' 1 / _
0 500 1000 1500 2000 e ! /
. interfer- no 4
Latency in ps S 4w 0.0 L L=
0123

4 5 300 600 9001200

End-to-end latency [uS]

1

0.8
0.6
0.4
0.2
0.0

N

N

—

—

A B =T I
| | I -
+—taverage --- latency bound gthg, 0.8 I .
5 99 %ile 126us '
......... T T T TTRRPRRIEIE R P 1L
%X x 100t %ile y 0ps v .6 - |
O 168us
‘ .]
5 - Jos 04 —— alone]
0 5 X x = - _ 1 — - +Hadoop _
B X X N = B—
L X X X x X — 1 + Had. w/ QJ
[T A A | A - é'-beSt tradeoff | I I I
11000 1500 2000
| | l l 3—E1 Throughput i
0.8 1.0 1.2 1.4 | | | ency In us
Throughput factor f %=X Max. latency
/ 2 10Ums 99%ile latency
c>)~ 10ms —5— s¢ [[Eaml
S 1ms —— alone /
5 100us T — - +iperf 7
R R P !
_ Rate limit [Gb/s] + +iperfw/QJ - _
H d forming . QJun . l
— = 4+ MRadoo pr— ’
p N Jl.'rcs 0-4 B : 1 I]
+Had.w/QJ | ‘
. = | | | 000 is a 2. off N " e / |
high la- lov 0.2 ’
500 1000 1500 2000 e e ! /
. interfer- no e /
Latency in us S e 0.0 L '

012345 3006009001200

o A B C 1.0 T =T
4'—Favera'ge . latency bound | gthg, 0.8 I |
T 05§ 99" %ile 126us '
......... B g R 26
é XX x 1001 %ile 8 us v 06 L _
% 20 |- X 168us
] X N | .\ 1
5 151 x TF I 104 F —— alone }
_§ 10 L " xxxx _/ l = - l — = + Hadoop A
5 XXX XX x X + Had. w/ QJ
o 5Py YTV — = <«— best tradeoff 1 | |
11000 1500 2000
0 L l l l l l 3—E1 Throughput 7 ,
1 08 10 12 14 19 27 | | | | ‘ency in us
Throughput factor f 14000 N L; N
/ .'—‘3. 100ms ~ Wﬂﬁ*
0.8 > 10ms %) 12000 |- T
g | ImS S 10000 F—N Vi /L\T 11
0.6 E 100us = T i/ |
' 108 & . S 8000 | {'—' Al
0.4 F _ 'S 6000 \ Mo
.. O T
o fomit = 4000 |- k=t Broadcast UDP + QJump !
02 L + HadOOP — = Y—¥ UDP + retries \/ﬂ —
+ Had. w/ QJ . 2000 - TCP "‘f
O O :' - | I | :x;l;is O | l | | | | | | |
. high |
0 500 1000 1500 2000 == o e g g 9°\° s\° S®
i et A R R
Latency in us Nk 200

Burst size / switch buffer size [log,]

w
o

N
&)

N
o

—
o

End-to-end latency [uS]
o

&)

0.8
0.6
0.4
0.2

0.0
0

1

I | |
+—taverage --- latency bound gthg, 0.8 I
99t %ile 126us '
IIIIIIIII th-oll- [I R T T R] llxl " = ®m = % m ® ®m ® = m = owomowom ou|swomowom u .
XXX1OO /o||e o 3()US P Nne L
=8 oo [e0TCP " expFapric] | & oo 112
B S| = 0 +—+ DCTCP = 10 —
% 19 Fooauump R 1|2
el S 4 | 5 M ke,
— 2| 0 - [0} = . o}
X N : N - T N
X Bls 2f 13 2} 4 |'s
| 3 % 1 cg) 1 M g 1 | | ! |
—— _;f z 0.2 0.4 0.6 0.8 |Z 0.2 0.4 0.6 0.8 |Z 0.2 0.4 0.6 0.8 2000
| § Load Load Load
0.8 (a) (0, 100kB]: average. (b) (0, 100kB]: 99t percentile. (c) (10MB, o0): average.
1
= i:o 20 '_e—'eTCP | X—xpi:abric i éo 20)_/etf 6—o—6—6—9O0— ED
S| = +—+DCTCP $—QJump — —
Z|lo 10} g o 10¢ ER
SR T s :
© — — . ©
AL 8 g
Sls 2t 1 | 2F 4 |'s
£|E S oo 9696 |
& Z 0.2 0.4 0.6 082 0.2 0.4 0.6 0.8 |2 0.2 0.4 0.6 0.8 . —
g Load Load Load O
(d) (0, 100kB]: average. (e) (0, 100kB]: 99" percentile. (f) (I0MB, oo): average. |
) 4
i} Y l'-f[
’ > tal 1 | l
o/ | | ||oo.o.S oLt 1 1 1 & b 4 b |
high |
500 1000 1500 2000 == 0 g g g g g ¢
. interfe Q- Q- N ©- (}f.)' QQ' QQ'
Latency in us N

Burst size / switch buffer size [log,]

200

Just one more thing...

10 r~ | -1 10 [~ T =4
7 -
7 o0 0.8} / : 0.8 / "
= 400 1 4 [7
8 200 4 0.6 | 0.6 [1
- ' [
E 0 04° / 1 04 a!/
§ -200 } ptpd only { 0.2} ‘/ // memcached only 0.2 1'/ Naiad only
© 400 | - ptpd with Hadoop | ' i s — = memd with Hadoop ' I = = Naad with Hadoop
| 1 | 1 J 0.0 i 0.0 4 L L
1000 1500 2000

0 100 200 300 400 500 0 50

Time since start [sec]

(a) Timeline of PTP synchronization offset. | (b) CDF of memcached request latencies

1000 1500 2000 0 500
Request latency [s]

Barrier sync. latency [us)

(¢) CDF of Naiad barrier sync. latencies.

Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, () memcached and (¢) Naiad traffic.

Setup | 50" 99'h;

one host, idle network | 85 1 26us

two hosts, shared switch 110 130us

shared source host, shared egress port 228 268us
shared dest. host, shared ingress port 125 278us
shared host, shared ingress and egress 221 229us
two hosts, shared switch queve | 1,920 | 2,100ps

Table 1: Median and 99" percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation

We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?

S 1 A - - - . - - -1 . «b

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google's
Spanner [11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure la, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop's shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200-500us out of syn-
chronization, 50 x worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator’
and measure the request latency. Figure 1b shows the
distribution of request latencies on an 1dle network and a

Just one more thing...

QJump Learn Publications Download Reproduce About Us CamSaS

Figure 1a/ 5

Figure 1a (page 2) is used as a motivational experiment to show that Hadoop
MapReduce is capable of interfering with the behavour of precision time
protocol. This figure is repeated in Figure 5 (page 8) in a slightly different form,
combined with results from memcached combined. In this case, the figure
shows that QJump is capable of resolving interference in PTPd as well as
memchaced.

Figure 1a

600 [=

oo | N

et [us]

Just one more thing...

NSDI 2015 - Queues don't matter when you can Jump them!

Figure

Fig. 1a

Fig.
1b

Fig. 1c
Tbl. 1
Fig. 3a

Fig.
3b

Fig. 3c

Fig. 6
Fig. 7

Fig. 9

Fig. 10

Fig. 11

Description
PTPd synchronization offset with and without sharing the network with Hadoop Map-Reduce

Memcached request latencies with and without sharing the network with Hadoop Map-Reduce

Naiad barrier synchronization latencies with and without sharing the network with Hadoop Map-Reduce
Latencies observed as ping and iperf share various parts of the network
Ping packet latency across a switch with and without QJump enabled

QJump reducing memcached request latency in the presence of Hadoop Map-Reduce traffic

QJump fixes Naiad barrier synchronization latency in the presence of Hadoop Map-Reduce traffic

PTPd, memcached and Hadoop sharing a cluster, with and without QJump enabled

QJump offers constant two phase commit throughput even at high levels of network interference

QJump comes closest to ideal performance when compared with Ethernet Flow Control, ECN and DCTCP

Normalized flow completion times in a 144-host simulation. QJump outperforms stand-alone TCP, DCTCP and pFabric
for small flows

Memcached throughput and latency as a function of the QJump rate limits

Latency bound validation of QJump with 60 host generating full rate, fan in traffic

Just one more thing...

Learn Publications Download Reproduce About Us CamSaS

.' JUMP THE QUEUE

Limit yourself to get ahead

Learn more »

Guaranteed latency in datacenter networks

QJump offers a range of network service levels, from guaranteed latency for
low-rate, latency-sensitive network coordination services to line-rate throughput

Conclusions

QJump applies datacenter opportunities to simplify
QoS rate calculations.

t provides levels of service from guaranteed
atency through to line-rate throughput

't can be deployed using without modifications to

applications,

Kernel code or hardware.

All source data, patches and source code at

http://camsas.org/qjump

This work was jointly supported by the EPSRC INTERNET Project EP/H040536/1 and the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-11-C-0249. The views, opinions, and/or findings contained in this article/presentation are those of the

author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

http://camsas.org/qjump

Backup Slides

Throughput [reqg/s]

12000 - -

10000 — /I\ -

8000 |- T I/ | B

6000 \I\ W -

4000 - ¥=k Broadcast UDP + QJump 1

000 | —y -I#gg + retries \I/L‘II?[‘
O I I I I I I L | | | | I '
o\O o\O o\o o\o o\o o\O 0\0
A > o 3 O O O

Burst size / switch buffer size [log,]

12
10

Latency [uS]

O D B~ O

] *i

I
modelled worst case

Uk Xk
.S

1

0123456 78910

Number of hosts sending

110

132 I I I I I I I I I I
110 L -~ modelled worst c:as‘ejiL _
— %
g 88 |- K3 "
~. K
CC) 66 | h*;. —
2 i * _
§ 44 * T
22 |- F -
+ 1 |
O T —— '

1 |
0123456 78 910
Number of hosts sending

15

—l
-

End-to-end latency [uS]

Ol

-

A B C
4'—Favera'ge o latency bound |
99" %ile

1.2 14 1.9
hroughput factor f

N
-

C>)\ 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
S > memcachec ")
I 15 _G© PTPd
)] V—V Hadoop
=
_ 10 |
=
O
N
S 5f—g
B > - v ?"‘7 \v/
Z 1 . ; C“‘. ; T ; R ; = T |

Q
©
%

ECN minimum marking threshold [segments]

O 0 D O O S X O O
R S N - R -

Host based interference?

Setup | 501% | 99thg

one host, 1dle network 83 126us

two hosts, shared switch 110 130us

shared source host, shared egress port 228 268us
shared dest. host, shared ingress port 125 2'78us
shared host, shared ingress and egress 221 229us
two hosts, shared switch queue | 1,920 | 2,100us

1.0
0.8
0.6
0.4
0.2
0.0

Ping (rpc) vs Ipert (bulk transtfer)

P I I
4

1 7 |

0123 45 300600 9001200

—— alone /
— = + Iperf /
-+ iperf w/ QJ

[

/

Latency in us

114

1.0

0.8
0.6
0.4
0.2
0.0

0

— - + Hadoop

/ -+ 4+ Had. w/ QJ

I
500 1000 1500 2000
Latency in us

1.0
0.8
0.6
0.4
0.2
0.0

— alone
— - + Hadoop
-+ Had. w/ QJ

0

I
500

1000 1500 2000
Latency In us

150

—— memcached avg. latency
PTPd offset

— idle network

I I I
250 300 350

Time since start [secC]

|
200

(d) (0, 100kB]: average.

(e) (0, 100kB]: 99 percentile.

o) -~ ' N 0 M I b% n
_c% g. 20 _G—O:)((:):_CP x—xpi:abrlc é o0 L | ;_3' 20 L |
S| —r - -
— 10 L 10 | = 10 |
f_‘; < EG—QQJump Q E R < 0 E
3 8 5F 8 5 g = 8 5 i
=| N N — N -
S|E 2 g 2r 3 |8 2
§ S 1 —B—R—RH—B—4 | 5 1 D—W S 1 :
& Z 0.2 04 0.6 0.8 |<Z 0.2 04 0.6 0.8 |Z .
§ Load Load Load

(a) (0, 100kB]: average. (b) (0, 100kB]: 99t percentile. (c) (10MB, «): average.

-g .éo 20 __G—IOTCP I X—Xpi:abric _- ;OD 20 ;_/1% © é © é —X :30'
S | +—+ DCTCP ©—©QJump — —
E @) 10 O 10 | 3 @)
S | LL C L - L
5|3 5S¢ T CE 3
an| N N — GN)
ElT 2 1|8 2r R
g 5 1 —S—H—R—4 S 1 ——8—8—6—9—8— o | |
- Z 0.2 0.4 0.6 0.8 |2 0.2 04 0.6 0.8 |2 0.2 0.4 0.6 0.8
g Load Load Load

(f) (10MB,): average.

200
150
100 -
50 -

N
~~
O
O
p -
=<,
-
-
Q.
L
O)
-
O
p -
-

1S
100ms
10ms
1ms
100us
10us

Latency [log,,]

AY

<«— best tradeoff

3£l Throughput ~

I I I
»X—X Max. latency

99%ile latency

4 6 8 10
Rate limit [Gb/s]

