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Datacenter Networks

- Commodity hardware

- Static network topology
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— PTPdoffset —— memcached avg. latency

memcached latency: higher = bad
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Queuing caused by Hadoop
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Network Interference

Queuing caused by Hadoop

l Hadoop
memcached

I I I | PTPd
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Delaying traffic from PTPd
and memcached

Switch



Network Interference:

Congestion from one
application causes queuing
that delays traffic from
another™ application.

*possibly related



Solving network interference? -

Borrow some old ideas

Packet by Packet Generalised Processor
Sharing (PGPS)

(Weighted) Fair Queuing (WFQ)

Differentiated Service Classes (diff-serv)

Parekh-Gallager Theorem



Solving network interference? =

Borrow some old ideas

Packet by Packet Generalised Processor
Sharing (PGPS)

(Weighted) Fair Queuing (WFQ)

Differentiated Service Classes (diff-serv)

Parekh-Gallager Theorem

Apply in a new context : Datacenters
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Opportunities & Constraints =

Datacenter Opportunities =

= - Static network
- Single admin domain
—Cooperat on

Deployablllty Constraints

Unmodﬂed‘apphcatlons = ;
- Unmodified kernel COde —
—Commodlty hardware *»
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Understanding delays

Delay type Il - Servicing Delay (Ds)

Switch



Understanding delays
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Understanding delays

Servicing delay causes queuing delay

Dq
e —

Switch



Eliminating Queuing Delay -

Switch



Eliminating Queuing Delay =

Switch



Rate-Limiting

't we can find a bound for
servicing delay, we can rate-
[ImIit hosts so that they never
experience queuing adelay
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Assume sending
hosts n=4

Switch
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Calculating Service Delay -

Assume sending
hosts n=4

° Assume edge
—> Speed

3 — R = 10Gb/s

4 >

Assume packet
size P =1500B Switch
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Assume sending | ¢ | De';}/RPer packet

hosts n =4
........ = 1500B / 10Gb/s
1T > =1.5 us
2 24 Assume edge
n—> speed
3 —i R = 10Gb/s

Assume packet
size P = 1500B Switch



Calculating Service Delay -

Assume sending Delay per packet

hosts n = 4 = P/R

- = 1500B / 10Gb/s
1T —— = 1.5 s
2 24 Assume edge

n—> speed
53— R = 10Gb/s
4 — Total delay
= h X per packet

Assume packet =4 x 1.5 s

size P = 1500B Switch =6 us



Calculating Servicing Delay -

P
servicing adelay =n X —
R



Calculating Servicing Delay -
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servicing aelay”™ =n X —
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Where

n - number of hosts
P - bytes sent
R - edge speed

*Assuming a fair scheduler



Calculating Servicing Delay -

network™ P

servicing delay”™ =n X —
R

Where

n - number of hosts
P - bytes sent
R - edge speed

*Assuming a fair scheduler
“*Apply hose constraint model



Rate-Limiting

1. Network is idle
2. Hosts send = P bytes
3. Wait(nx P/ R ) secs

4. Goto 1

Network
Epoch






Epoch Epoch

4 packets



Epoch Epoch

4 packets






~ 8 packets per
epoch



Eliminating Synchronization -

P
network epoch = 2n X —

2

Where

n - number of hosts

P - bytes sent

R - edge speed

2 - mesochronous compensation



<p The dark side of network epoch -

R
throughput = —

2N

Where

n is the number of hosts
R is the edge speed



<y The dark side of network epoch -

10GDb/s

throughput = —
2 X 1000

Where

n = 1000 hosts
R =10 Gb/s



<y The dark side of network epoch «

10GDb/s

throughput” = —
2 X 1000

Where

n = 1000 hosts
R =10 Gb/s



solution:
assume there iIs
no problem?
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Which assumption?
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Rate [Imit

0 10G
low throughput



Which assumption?
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Rate limit Latency Distribution

0 10G Secs

low throughput guaranteed latency
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Rate [imit Latency Distribution

0 10G SECS
no latency guarantee

line rate throughput









QJump with priorities

> Low latency
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High priority
Low rate-limit



Medium Latency

- Low latency
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Medium priority
Medium rate-limit



B High Throughput
Medium Latency

“'.'I' -7 Low latency

Low priority
No rate-limit



—High Throughput

Medium Latency
Low latency



QJump with priorities

B High Throughput
Medium Latency

l Low latency

Queues don’t matter when you can Jump them!



Prioritization

Use hardware priorities to run
different QJump levels
together, but isolated™ from
each other.

* from layers below



Implementation

| long epoch_cycles = to_cycles(network_epoch);
> long timeout = start_time;
3 long bucket [NUM_QJUMP_LEVELS] ;

5 int qJumpRateLimiter(struct sk_buff* buffer) {

6 long cycles_now = asm("rdtsc"); /* read cycle ctr */
7 int level = buffer->priority;

s if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;

10 bucket [level] = tokens[levell];

i}

2 if (buffer->len > bucket[level]) {

13 return DROP; /* tokens for epoch ezhausted */
14 }

15 bucket[level] -= buffer->len;

16  sendToHWQueue(buffer, level);
17 return SENT;




ong bucke

5 int qJumpRateLimiter(struct sk_buff* buffer) {

long cycles_now = asm("rdtsc"); /* read cycle ctr */
int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */
timeout += epoch_cycles;
bucket [level] = tokens[levell];
}
if (buffer->len > bucket[level]) {
return DROP; /* tokens for epoch ezhausted */
}
bucket [level] -= buffer->len;
sendToHWQueue (buffer, level);
return SENT;
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~36 cycles / packet

7 int level = buffer->priority;
s if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;

10 bucket [level] = tokens[levell];

i}

2 if (buffer->len > bucket[level]) {

13 return DROP; /* tokens for epoch ezhausted */
14 }

15 bucket[level] -= buffer->len;

16  sendToHWQueue(buffer, level);
17 return SENT;
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Implementation

~36 cycles / packet

7

11
12
13
14
15
16
17

18

int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */

Smart Buffer Sizing

+
if (buffer->len > bucket[level]) {

return DROP; /* tokens for epoch ezhausted */
}
bucket [level] -= buffer->len;
sendToHWQueue (buffer, level);
return SENT;




Implementation

~36 cycles / packet

int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */

Smart Buffer Sizing

Unmodified Applications
bucket [level] -= buffer->len;

sendToHWQueue (buffer, level);
return SENT;

}




Implementation

~36 cycles / packet

int level = buffer->priority;
if (cycles_now > timeout) { /* new token alloc? */

Smart Buffer Sizing

Unmodified Applications

bucket [level] -= buffer->len;

802.1 Q
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Conclusions

QJump applies datacenter simplifications
to QoS rate calculations.
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It provides service levels ranging from
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Conclusions =

_ QJump applies datacenter opportunities to
= simplity QoS rate calculations.

o —

It provides service levels ranging from
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: - :
. ¥ - 3
b .
H3 3
- 3
4 -
- :
4 3
2

It caq be deployed usmg
; 1o apphcatmns kernel

code or hardware



ant to know more?

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor
Andrew W. Moore

Malte Schwarzkopf
Steven Hand'

Ionel Gog Robert N. M. Watson
Jon Crowcroft

University of Cambridge Computer Laboratory
' now at Google, Inc.

Abstract

QJUMP is a simple and immediately deployable ap-
proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications
To mitigate network interference, QJUMP applies Inter-
net QoS-inspired techniques o datacenter applications.
Each application is assigned to a latency sensitivity level
(or class). Packets from higher levels are rate-limited
in the end host, but once allowed into the network can
“jump-the-quene” over packets from lower levels, In set-
tings with known node counts and link speeds, QJump
can support service levels ranging from strictly bounded
latency (but with low rate) through to line-rate through-
put (but with high latency vanance).

We have implemented QJuMP as a Linux Traffic Con-
trol module. We show that QJuMP achieves bounded
latency and reduces in-network interference by up to
300x, outperforming Ethernet Flow Coatrol (802.3x),
ECN (WRED) and DCTCP. We also show that QJump
improves average flow completion times, performing
close to or better than DCTCP and pFabnic.

1 Introduction

Many datacenter applications are sensitive to tail la-
tencies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]). This has a tangible impact on user engage-
ment and thus potential revenue [8, 9.

One source of latency tails is nerwork interfer-

amems monmonetionn feoam themsahmdt intancivn anmliaanane

cause queveing that extends memcached request latency

tails by 85 times the interference-free maximum (§2).

If memcached packets can somehow be priontized to
“jump-the-queue”™ over Hadoop's packets, memcached
will no longer experience latency tails due to Hadoop. Of
course, multiple instances of memcached may still inter-
fere with each other, causing long queues or incast col-
lapse [10]. If each memcached instance can be appropri-
ately rate-limited at the origin, this too can be mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Intemet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single au-
thority. In this environment, we can enforce system-wide
policies, and calculate specific rate-limits which take into
account worst-case behavior, ultimately allowing us to
provide a guaranteed bound on network latency.

QJuMP implements these concepts in a minimal rate-
limiting Linux kemel module and application utility.
QJump has four key features. [t

1. resolves network interference for latency-sensitive

applications without sacrificing utilization for
throughput-intensive applications;

. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring

no changes to hardware or application code; and

4 nerforms close to or hetter than comnetine svs.

[ ]
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Abstract

QJUMP is a simple and immediately deployable ap-
proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications.
To mitigate network interference, QJUMP applies Inter-
net QoS-inspired techniques to datacenter applications.
Each application is assigned to a latency sensitivity level
(or class). Packets from higher levels are rate-limited
in the end host, but once allowed into the network can
“jump-the-queue” over packets from lower levels, In set-
tings with known node counts and link speeds, QJump
can support service levels ranging from strictly bounded
latency (but with low rate) through to line-rate through-
put (but with high latency vanance).

We have implemented QJuMP as a Linux Traffic Con-
trol module. We show that QJuMP achieves bounded
latency and reduces in-network interference by up to
300x, outperforming Ethernet Flow Coatrol (802.3x),
ECN (WRED) and DCTCP. We also show that QJump
improves average flow completion times, performing
close to or better than DCTCP and pFabnic.

1 Introduction

Many datacenter applications are sensitive to tail la-
tencies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]). This has a tangible impact on user engage-
ment and thus potential revenue [8, 9.

One source of latency tails is nerwork interfer-

amems monmonetionn feoam themsahmdt intancivn anmliaanane

cause queveing that extends memcached request latency

tails by 85 times the interference-free maximum (§2).

If memcached packets can somehow be priontized to
“jump-the-queue”™ over Hadoop's packets, memcached
will no longer experience latency tails due to Hadoop. Of
course, multiple instances of memcached may still inter-
fere with each other, causing long queues or incast col-
lapse [10]. If each memcached instance can be appropri-
ately rate-limited at the origin, this too can be mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Intemet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single au-
thority. In this environment, we can enforce system-wide
policies, and calculate specific rate-limits which take into
account worst-case behavior, ultimately allowing us to
provide a guaranteed bound on network latency.

QJuMP implements these concepts in a minimal rate-
limiting Linux kemel module and application utility.
QJump has four key features. [t

1. resolves network interference for latency-sensitive

applications without sacrificing utilization for
throughput-intensive applications;

. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring

no changes to hardware or application code; and

4 nerforms close to or hetter than comnetine svs.
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Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, () memcached and (¢) Naiad traffic.

Setup | 50" 99'h;

one host, idle network | 85 1 26us

two hosts, shared switch 110 130us

shared source host, shared egress port 228 268us
shared dest. host, shared ingress port 125 278us
shared host, shared ingress and egress 221 229us
two hosts, shared switch queve | 1,920 | 2,100ps

Table 1: Median and 99" percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation

We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?

S 1 A - - - . - - -1 . «b

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google's
Spanner [ 11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure la, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop's shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200-500us out of syn-
chronization, 50 x worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator’
and measure the request latency. Figure 1b shows the
distribution of request latencies on an 1dle network and a
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Figure 1a/ 5

Figure 1a (page 2) is used as a motivational experiment to show that Hadoop
MapReduce is capable of interfering with the behavour of precision time
protocol. This figure is repeated in Figure 5 (page 8) in a slightly different form,
combined with results from memcached combined. In this case, the figure
shows that QJump is capable of resolving interference in PTPd as well as
memchaced.

Figure 1a
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Figure

Fig. 1a

Fig.
1b

Fig. 1c
Tbl. 1
Fig. 3a

Fig.
3b

Fig. 3c

Fig. 6
Fig. 7

Fig. 9

Fig. 10

Fig. 11

Description
PTPd synchronization offset with and without sharing the network with Hadoop Map-Reduce

Memcached request latencies with and without sharing the network with Hadoop Map-Reduce

Naiad barrier synchronization latencies with and without sharing the network with Hadoop Map-Reduce
Latencies observed as ping and iperf share various parts of the network
Ping packet latency across a switch with and without QJump enabled

QJump reducing memcached request latency in the presence of Hadoop Map-Reduce traffic

QJump fixes Naiad barrier synchronization latency in the presence of Hadoop Map-Reduce traffic

PTPd, memcached and Hadoop sharing a cluster, with and without QJump enabled

QJump offers constant two phase commit throughput even at high levels of network interference

QJump comes closest to ideal performance when compared with Ethernet Flow Control, ECN and DCTCP

Normalized flow completion times in a 144-host simulation. QJump outperforms stand-alone TCP, DCTCP and pFabric
for small flows

Memcached throughput and latency as a function of the QJump rate limits

Latency bound validation of QJump with 60 host generating full rate, fan in traffic
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Guaranteed latency in datacenter networks

QJump offers a range of network service levels, from guaranteed latency for
low-rate, latency-sensitive network coordination services to line-rate throughput




Conclusions

QJump applies datacenter opportunities to simplify
QoS rate calculations.

t provides levels of service from guaranteed
atency through to line-rate throughput

't can be deployed using without modifications to

applications,

Kernel code or hardware.

All source data, patches and source code at

http://camsas.org/qjump

This work was jointly supported by the EPSRC INTERNET Project EP/H040536/1 and the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-11-C-0249. The views, opinions, and/or findings contained in this article/presentation are those of the

author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.
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Host based interference?

Setup | 501% | 99thg

one host, 1dle network 83 126us

two hosts, shared switch 110 130us

shared source host, shared egress port 228 268us
shared dest. host, shared ingress port 125 2'78us
shared host, shared ingress and egress 221 229us
two hosts, shared switch queue | 1,920 | 2,100us
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(d) (0, 100kB]: average.

(e) (0, 100kB]: 99 percentile.
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