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Datacenter load balancing




Datacenter load balancing today
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Strawman approach
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* Adding/removing servers breaks connection affinity




Load balancers use state to ensure connection
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Load balancers use state to ensure connection
affinity

\ M/ Server1
|

Server,

MUX

* Only new connections are hashed
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Load balancers use state to ensure connection
affinity
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* Scaling mux pool may reset some connections



Load balancers use state to ensure connection
affinity

\ M/ Server1
|

Server,

MUX




SYN floods use up state memory
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SYN floods use up state memory
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SYN floods use up state memory
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* Back to the straw man approach
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Stateful designs don’t guarantee
connection affinity



Beamer: stateless load balancing

Beamer muxes do not keep per-connection state;
‘each packet is forwarded independently.‘

When the target server changes, connections
may break.

Beamer uses state stored in servers to
‘ redirect stray packets.




Beamer daisy chaining
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Beamer daisy chaining
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Balancing packets in Beamer
Which hashing algorithm is best?

Good load Few rules in
Low churn
balancing dataplane

ECMP

Con5|.stent v « v
Hashing

Maglev v v x

Hashing



Beamer hashing

Indirection layer
Pick number of buckets B > N, number of servers

Mux dataplane:

e Assign each bucket to one server

* Bucket-to-server mappings known by all muxes
* Maintained by a centralized controller

Mux algorithm:
 Hash each packet modulo B
* Send to corresponding server



Beamer at work
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Beamer at work
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* Packets contain previous server and time of reassignment



Beamer at work
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* New connections are handled locally



Beamer at work
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Benefits of Beamer muxes

Less memory usage and cache thrashing
Implementable in hardware: P4
Interchangeable

Resilient to SYN flood attacks

Cost: 16B encapsulation overhead per packet



Beamer mux performance

e Software implementation on top of netmap
* Machine: Xeon E5-2697 v2 @ 2.70GHz, Intel 82599 NIC

* Compared against:

— Stateful — similar performance to Google’s Maglev [NSDI'16]



Packet rate (Mpps)

Single mux performance
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Realistic traffic

HTTP traffic from recent MAW!I trace
* Packets replayed back-to-back

36Gbps of upstream traffic on 7 cores
e 15 times more downstream traffic: 540Gbps

Rough estimate: 50-500 servers/mux
* Assuming servers source 1-10Gbps of traffic



Testbed evaluation

e 20 machines
— 10Gbps NICs

 |[BM RackSwitch 8264 as border router

* Software muxes
— P4 reference implementation also used



Adding and removing muxes
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* Mux failures and churn are handled smoothly



Adding servers
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Beamer spreads traffic evenly across servers



Connection affinity under SYN flood attacks

1Mpps SYN flood
2 muxes, 8 servers, 700 running connections
Drain servers during SYN flood

Stateful 14818 351+21

Beamer 0 0 0 0



Control plane
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* A centralized fault-tolerant controller
manages the dataplane
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Control plane
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Control plane

ZooKeeper
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 Muxes download update
* Daisy chaining allows for temporarily stale muxes



Control plane experiments

Tested on Amazon EC2

3 ZooKeeper daemons, 100 muxes

Large simulated service: 64K servers, 6.4M buckets

Stress-tested controller



Control plane experiments

When adding 32.000 servers:
* Controller takes 1-10s to update ZooKeeper

* Muxes take 0.5-6s to get new dataplane information

* Total control traffic: 1GB (10MB/mux)



Please see paper for:

* MPTCP support in Beamer

* Minimizing # of rules required in muxes

— 1 rule / server, rather than 1 rule / bucket

* Avoiding reset connections in corner cases



Conclusions

Stateless load balancing using daisy chaining

36Gbps of HTTP traffic on 7 cores
— 540Gbps of downlink traffic

Scalable, fault tolerant control plane

Beamer is open-source: https://github.com/Beamer-LB



https://github.com/Beamer-LB

