Stateless Datacenter Load Balancing with
Beamer

Vladimir Olteanu, Alexandru Agache,
Andrei Voinescu, Costin Raiciu
University Politehnica of Bucharest

Thanksto (&) SSICLOPS -

Datacenter load balancing

Datacenter load balancing today

srclP dstIP payload

Border E
over s Olelvr NS
— @[cvr

Strawman approach

\

MUX

Server,

Strawman approach

\

MUX

Server,

Server,

* Adding/removing servers breaks connection affinity

Load balancers use state to ensure connection
affinity

\ M/ Server1
| 1

Server,

MUX

Load balancers use state to ensure connection
affinity

\ M/ Server1
|

Server,

MUX

* Only new connections are hashed

Load balancers use state to ensure connection
affinity

\limy. -

Server,

Server,

MUX 2

Load balancers use state to ensure connection
affinity

\my. -

Server,

\ (] 2 M Serverz

MUX 2

* Scaling mux pool may reset some connections

Load balancers use state to ensure connection
affinity

\ M/ Server1
|

Server,

MUX

SYN floods use up state memory

[|
N B R R

MUX

Server,

Server,

SYN floods use up state memory

MUX

X Yo Y@ o X«.E

Server,

Server,

SYN floods use up state memory

Flow _DIP__
2
2
2
2
2

MUX

* Back to the straw man approach

Server,

Stateful designs don’t guarantee
connection affinity

Beamer: stateless load balancing

Beamer muxes do not keep per-connection state;
‘each packet is forwarded independently.‘

When the target server changes, connections
may break.

Beamer uses state stored in servers to
‘ redirect stray packets.

Beamer daisy chaining

~~

MUX

MUX

DATAPLANE

* Used when reassigning traffic

Server,

Server,

Want to
POWER OFF

Beamer daisy chaining

~~

MUX

MUX

DATAPLANE

* Used when reassigning traffic

Server,

T

Server,

Want to
POWER OFF

Beamer daisy chaining

Server,

DATAPLANE N -
A

Server,

MUX

* Daisy-chained connections die off in time

Want to
POWER OFF

Balancing packets in Beamer
Which hashing algorithm is best?

Good load Few rules in
Low churn
balancing dataplane

ECMP

Con5|.stent v « v
Hashing

Maglev v v x

Hashing

Beamer hashing

Indirection layer
Pick number of buckets B > N, number of servers

Mux dataplane:

e Assign each bucket to one server

* Bucket-to-server mappings known by all muxes
* Maintained by a centralized controller

Mux algorithm:
 Hash each packet modulo B
* Send to corresponding server

Beamer at work

MUX

2
3
4

1
1
1

\ Bkt DIP PDIP TS /
1 1 - -

Server,

Server,

Beamer at work

Bkt DIP PDIP TS
: Server,

IP | DIP, | t | IP| TCP Serverz

S——
MUX IP Option

* Packets contain previous server and time of reassignment

Beamer at work

Bkt DIP PDIP TS
) Server,

Server,

MUX

* New connections are handled locally

Beamer at work

~~
T~

MUX

Bkt DIP PDIP TS

1 1
2 1
3 2 1 t
4 2 1 t

/

Server,

Server,

Daisy chained connections die off in time

Benefits of Beamer muxes

Less memory usage and cache thrashing
Implementable in hardware: P4
Interchangeable

Resilient to SYN flood attacks

Cost: 16B encapsulation overhead per packet

Beamer mux performance

e Software implementation on top of netmap
* Machine: Xeon E5-2697 v2 @ 2.70GHz, Intel 82599 NIC

* Compared against:

— Stateful — similar performance to Google’s Maglev [NSDI'16]

Packet rate (Mpps)

Single mux performance

12 | | | |

10 FNG o Line rate

o | Beamer, 1 core ——
Beamer, 2 cores = #=

6 Stateful, 1M flows —8—

2 | 5

0 | | |

64 128 256 512 1024 1500

Packet size (B)

Realistic traffic

HTTP traffic from recent MAW!I trace
* Packets replayed back-to-back

36Gbps of upstream traffic on 7 cores
e 15 times more downstream traffic: 540Gbps

Rough estimate: 50-500 servers/mux
* Assuming servers source 1-10Gbps of traffic

Testbed evaluation

e 20 machines
— 10Gbps NICs

 |[BM RackSwitch 8264 as border router

* Software muxes
— P4 reference implementation also used

Adding and removing muxes

L 4muxd

Throughput (Gbps)

O 50 100 150 200 250 300 350 400
Time (s)
* Mux failures and churn are handled smoothly

Adding servers

12 | | | ! | |

Throughput (Mpps)

[A R 2
|

0 50 100 150 200 250 300
Time (s)
Beamer spreads traffic evenly across servers

Connection affinity under SYN flood attacks

1Mpps SYN flood
2 muxes, 8 servers, 700 running connections
Drain servers during SYN flood

Stateful 14818 351+21

Beamer 0 0 0 0

Control plane

14}
__-=2%
=, \
- - ~ s
- - - \
- ,’// 7
’—””/z // \
- -
’—— ,” ,/ // \
- - - 7 \
”’ /’ /’ / \
- - 4

o] [mix] [mox] [mix

* A centralized fault-tolerant controller
manages the dataplane

-
-
-
-
-
-
-

Control plane

”
—’
-

-

ZooKeeper
Cluster

55‘5“
-, \

Controller

vl

Control plane

ZooKeeper
Cluster

No’c‘\ﬁ'\c’cﬁ'\o“S
MUX MUX MUX MUX Controller
vl vl vl vl v2

o | PO TS

D4 D1 NOW
D2 D4 TS2

Control plane

ZooKeeper
Cluster

MUX MUX MUX MUX Controller

V2 vl v2 vl v2

 Muxes download update
* Daisy chaining allows for temporarily stale muxes

Control plane experiments

Tested on Amazon EC2

3 ZooKeeper daemons, 100 muxes

Large simulated service: 64K servers, 6.4M buckets

Stress-tested controller

Control plane experiments

When adding 32.000 servers:
* Controller takes 1-10s to update ZooKeeper

* Muxes take 0.5-6s to get new dataplane information

* Total control traffic: 1GB (10MB/mux)

Please see paper for:

* MPTCP support in Beamer

* Minimizing # of rules required in muxes

— 1 rule / server, rather than 1 rule / bucket

* Avoiding reset connections in corner cases

Conclusions

Stateless load balancing using daisy chaining

36Gbps of HTTP traffic on 7 cores
— 540Gbps of downlink traffic

Scalable, fault tolerant control plane

Beamer is open-source: https://github.com/Beamer-LB

https://github.com/Beamer-LB

