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Modern datacenter networks are fast

• 100 Gbps 
• 2 µs RTT under one switch 
• 300 ns per switch hop



 3

Existing networking options sacrifice performance or generality

Fast
SpecializedGeneral

Slow

• Works in commodity 
datacenters 

• Provides reliability, 
congestion control, …

Ex: TCP, gRPC

• Makes simplifying 
assumptions 

• Requires special 
hardware

Ex: DPDK, RDMA



Drawbacks

• Limited applicability 

• Reduced modularity and reuse due to co-design

Specialization for fast networking
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FaRM [NSDI 14, SOSP 15]  
HERD [SIGCOMM 14] 
DrTM [SOSP15, OSDI 18]  
LITE [SOSP 17] 
Wukong [OSDI 16] 
FaSST [OSDI 16]  
NAM-DB [VLDB 17] 
HyperLoop [SIGCOMM 18]  
DSLR [SIGMOD 18] 

…

RDMA NICs
KV-Direct [SOSP 15] 
ZabFPGA [NSDI 18]

FPGAs
NetChain [NSDI 18]

Programmable switches
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eRPC provides both speed and generality

• Works in commodity 
datacenters 

• Provides reliability, 
congestion control, …

General
Fast

• Makes simplifying 
assumptions 

• Requires special 
hardware

Slow
Specialized

Three challenges


1. Managing packet loss 

2. Low-overhead transport 

3. Easy integration for 
existing applications
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Challenge #1: Managing packet loss
Problem: Millisecond timeouts for small RPCs 

 
 
 

Sender

Receiver

Sender

If a client’s unlock packet is dropped: 
• Client retransmits after many milliseconds 
• Many contending requests fail

Buffer
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Challenge #1: Managing packet loss

Hardware solution: Lossless link layer

(e.g., PFC, InfiniBand)

eRPC’s solution  
A relaxed requirement for rare loss, 
supported by existing networks

Problem: Millisecond timeouts for small RPCs


 
 
 

Sender

Receiver

Sender

If a client’s unlock packet is dropped: 
• Client retransmits after many milliseconds 
• Many contending requests fail

Buffer
Pros: Simple/cheap reliability 
Cons: Deadlocks, unfairness



Enabled by low-latency NICs

Slow NIC  
Adds 10 µs

Fast NIC 
Adds 500 ns
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In low-latency networks, switch buffers prevent most loss
• Bandwidth = 25 Gbps, RTT = 6.0 µs 

• Bandwidth x delay (BDP) = 19 KB 

• Switch buffer = 12 MB >> BDPN N N N

25 Gbps

100 nodes, 6 switches
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All modern switches have buffers >> BDP

Broadcom Trident 3 (32 MB) Mellanox Spectrum 2 (42 MB) Barefoot Tofino (22 MB)

These are not “big buffer” switches!

Cisco 3636-C (16 gigabytes, DRAM buffer)
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Small BDP + sufficient switch buffer ⇒ Rare loss

19 KB

Switch buffer (12 MB)

Victim node

Node 1

Node 100

Node 2

• Incast tolerance = 12 MB / 19 KB = 640 
  ≈ 50-way tolerance desired in practice [e.g., DCQCN @Microsoft, Timely @Google] 

• Tested with 100-way incast: No loss

(+ other non-incast flows)
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Challenge #2: Low-overhead transport layer

Many more in paper: 

• Optimized memory allocation for small-size RPCs 

• Optimized threading for short-duration RPCs 

• …

Idea: Optimize for the common case 

Example 1: Optimized DMA buffer management for rare packet loss

Example 2: Optimized congestion control for uncongested networks
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Example: Optimized DMA buffer management for rare packet loss

Request

NIC

CPU

Method #2: Server’s response 
• Free 
• Doesn’t work if a packet is lost

Method #1: Explicit NIC signal 
• Overhead for each request

Problem: Detecting completion of request DMA

Solution: Use server’s response in common case. Flush DMA queue during rare loss.

DMA read
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 Example: Efficient congestion control in software

Problem: Congestion control overhead  

Hardware solution: NIC offload 
Pro: Saves CPU cycles 
Con: Low flexibility

eRPC’s solution  
Optimize for uncongested networks

Example: Rate limiter overhead

Ex: Difficult to use Carousel 
[SIGCOMM 17]
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Datacenter networks are usually uncongested

Facebook datacenter studies

Timescale Links less than 10% utilized

Ten minutes 99% [Roy et al., SIGCOMM 15]

25 µs 90% [Zhang et al., IMC 17]
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Congestion control, fast and slow

eRPC uses RTT-based 
congestion control 
(Timely [SIGCOMM 15]) 

RTT high: TX_rate--; 
RTT low:  TX_rate++;
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Congestion control, fast and slow
Client receives ACK & measures RTT

RTT low & 
TX rate = MAX 

NoUpdate TX rate

NoPlace in rate limiter Yes Place on wireTX rate = MAX

9% CPU overhead20
% C

PU
 

ov
er

he
ad

eRPC uses RTT-based 
congestion control 
(Timely [SIGCOMM 15]) 

RTT high: TX_rate--; 
RTT low:  TX_rate++;
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Together, common-case optimizations matter

Result: Low overhead transport with congestion control

Unoptimized
+Zero-copy request processing

+Preallocated responses
+Multi-packet RQ

+Rate limiter bypass
+Timely bypass

+Batched RTT timestamps

Millions of requests/second (one core)

0 2 4 6 8 10

66%
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eRPC microbenchmark highlights

Lossy 40 GbE network  

• 2.3 µs RPC round-trip latency 

• Line rate with one core 

• 60 million RPCs/s per machine 

• Scalability to 20000 connections ( >> RDMA)
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Challenge #3: Easy integration with existing applications

Image credit: James Mickens

Complexity during failure

• 5 years of developer effort. 150+ unit tests, fuzzing. 
• In production use by Intel

Client

Leader

Follower

Remote procedure calls in Raft

Follower
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Replication over eRPC is fast

eRPC/Lossy Ethernet

[Istvan et al., NSDI 16] FPGA

[DARE, HPDC 15] RDMA

[NetChain, NSDI 18] P4 switch

0 5 10

9.7µs

9µs

5.5µs

5.5µs

Client latency (µs) 
3-way replication, data in DRAM

Raft-over-eRPC does not have network or object size constraints
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Takeaway: Given fast packet I/O, we can provide fast networking in software

I am on the academic job market

erpc.io
Industry impact: https://github.com/daq-db/

“Using performance to justify placing functions in a low-level subsystem must be done carefully.  

Sometimes, by examining the problem thoroughly, the same or better performance can be 
achieved at the high level.” 

— End-to-end Arguments in System Design [Saltzer, 84]


