

Eingerprint: Robust Energy-related Fingerprinting for Passive RFID Tags

Xingyu Chen*, Jia Liu*, Xia Wang, Haisong Liu, Dong Jiang, Lijun Chen

Motivation

Passport

Infant security

RFID authentication is becoming increasingly important

Existing Work

Cryptographic methods

- Increase the cost of the passive tag
- Reduce the communication range

Physical-layer Identification

- Require a purpose-built device
- Sensitive to environmental conditions (Phase)

Our Solution: Energy-related Fingerprint

Basic idea:

Use the electronic energy stored in the chip circuit to fingerprint a tag

Challenges:

- Physically measuring the circuit is impractical
 - Needs a purpose-built test platform
 - Destroys the tag's structure and function

Our Solution

Step 1: Turn on the reader to energize the tags until they are fully charged

Step 2: Turn off the reader and wait for a period of time

Step 3: Check each tag whether its energy is exhausted or not. If yes, the waiting time is treated as the persistence time of the tag.

Our Solution

Whether a tag's energy is exhausted?

Volatile Memory: Inventoried Flag

Inventoried flag (Volatile memory)

Fingerprint Extraction

> Related functions in EPCglobal Gen2 standard (Gen2) ^[1]:

- ➢ F1: Sessions and inventory flag
- ➢ F2: Select Command.
- ➢ F3: Query Command.

[1] GS1 EPCglobal. EPC radio-frequency identity protocols generation-2 UHF RFID version 2.0.1, 2015.

Session and Inventoried Flag

Observations: ➤ The flag will flip to A when the tag is exhausted➤ A tag has three fingerprints

Select Command

Fields of Select command:

Query Command

➢ Fields of Query command:

Multiple Tags

Commands (i) $t_i \leftarrow B - : S(2, a = 5, 1, 32, 96, id_i), i \in [2, m]$

Enhanced SQM (ESQM)

SQM is still time-consuming

e.g., Measuring a tag with 3 s persistence time requires 0.5+0.6+ +3 = **45.5 s.**

> The persistence time of S1 can be measured when reader is on

G2 Session	Persistence time	
S0	Tag energized: Indefinite Tag not energized: none	
S1	Tag energized: 500 ms -5 sec Tag not energized: 500 ms -5 sec	
S2	Tag energized: Indefinite Tag not energized: >2 sec	
S3	Tag energized: Indefinite Tag not energized: >2 sec	

Enhanced SQM (ESQM)

Quickly measure the persistence time of session 1

Tips: According to Gen2, the tag will flip its inventory flag after replying to the reader. (A->B in this case)

ESQM--Multiple Tags

Genuineness Validation

Observation:

• Persistence time follows **Gaussian distribution**.

Solution:

• We use **t-test** to check whether the test data and the genuine data follow the same distribution.

> 1000 tags + 4 readers

• Eingerprint is robust to environmental factors

Performance with different sessions

G2 Session	Persistence time	
SO	Tag energized: Indefinite Tag not energized: none	Accuracy = 99.4%
S1	Tag energized: 500 ms -5 sec Tag not energized: 500 ms -5 sec	
S2	Tag energized: Indefinite Tag not energized: >2 sec	
S3	Tag energized: Indefinite Tag not energized: >2 sec	

	S 1	S1+S3	S1+S2+S3
Accuracy	97.3%	98.3%	99.4%

Performance on different tag models

Г					
I	Company	Chip	Model	Accuracy	
I		Higgs 3	ALN-9634	97.3%	
Alien 	Higgs 4	ALN-9740	96.9%		
		Higgs EC	ALN-9830	96.6%	Accuracy > 94%
		Ucode G2iL	MiniWeb	94.4%	
	Ucode G2iM	AD-380iM	94.9%		
		Ucode 8	AD-238U8	94.2%	
	Impini	Monza 4	H47	77.8%	
mpmj	Monza R6	BLING	80.4%		

Conclusion

01

We propose a new **energy-related fingerprint** called Eingerprint to authenticate passive tags. The competitive advantage of Eingerprint is that it is **fully compatible with the RFID standard**.

02

We use a new metric called **persistence time** to indicate the energy level stored in a tag's RC circuit. A flag-based solution is designed to measure the time.

03

We implement a prototype of Eingerprint in a commercial RFID system. Experiments show that our method is able to **achieve a high accuracy** and also **robust to the environmental factors**.

THANKS