Frequency Configuration for LP-WANs in a Heartbeat

Akshay Gadre¹, Revathy Narayanan^{1,2}, Anh Luong¹, Anthony Rowe¹, Bob lannucci¹, Swarun Kumar¹

¹Carnegie Mellon University, ²IIT Madras

Find out more about Chime at : <u>https://www.witechlab.com/chime.html</u>

Future City-Scale Internet-of-Things

Low-Power Wide-Area Networks (LP-WANs)

LoRaWAN Operates in 915 MHz ISM band

Battery Life 10 years on AA battery

Battery Life of a LP-WAN client

Battery Life 10 years on AA batterist Data Rate Only

BATTERY USAGE ■ TX Sleep ■ RX ■ Leakage Wireless Communication 97% of battery usage

Urban Wireless Impairments Significantly Lower Battery Life

Saving power in LP-WANs

Frequency Configuration

902 MHz

Frequency Configuration

Too many frequency configurations to choose from

Large variations in received signal power

Campus-Scale Motivation Study

Brute force approach for frequency configuration

Wireless channel quality changes every few minutes

In fact, even interpolation-based methods are ineffective in estimating a good frequency.

Can low-power clients find a good frequency-of-operation, without sacrificing their battery life?

Chime – Frequency Configuration for LP-WANs in a Heartbeat

- First system which can estimate an optimal frequency using one packet
- Evaluated over a 0.329 sq.km. testbed at CMU campus in Pittsburgh.
- Achieved average 230% improvement in client battery life

What causes signal power to vary across frequencies?

RX signal power flat across frequencies

RX signal power varies across frequencies

Urban Multipath

Time

Constructive (In phase)

Destructive (Out of phase)

Chime – Frequency Configuration for LP-WANs in a Heartbeat

Synchronized Phase Measurements

Synchronized Phase Measurements

Need to measure phases of both at the same time and frequency!

Need to measure phases of both at the same time and frequency!

1. Transmit at same time and frequency

COLLISION!

Client Packet

Master Base

Station Packet

LP-WAN packets long - Too much drift

3. Transmit in adjacent frequency band => Chime

Need to measure both phases at the same time and frequency! Master Client **Base station** Packet Packet **Offset Free** Channel ϕ **Client Packet** Master Base **Station Packet** ϕ_{B_M} Time No base station offsets Frequency Still different frequencies? known

Chime – Frequency Configuration for LP-WANs in a Heartbeat

Reverse Engineer Complex Web of Multipath

Estimate the behavior of reflectors

Given the location of A and B, we can estimate α_{BA}

Estimate the behavior of reflectors

Feasibility of multipath model

Multipath model only works if *#* reflectors < *#* base stations

75% of locations only require us to estimate 2 – 3 dominant paths

Where are the reflectors?

 $BS_{1} = h_{d_{A1}} + \alpha_{BA}h_{d_{B1}} \qquad BS_{2} = h_{d_{A2}} + \alpha_{BA}h_{d_{B2}}$

Given the location of A and B, we can estimate α_{BA}

(More details in the paper...)

Chime – Frequency Configuration for LP-WANs in a Heartbeat

Chime – Estimating optimal frequency of operation

• For each path,

$$h_{f_1} \to h_{f_2}$$

• Channel of multiple paths

$$h_{f_2} = h_{f_2@p_1} + h_{f_2@p_2} + h_{f_2@p_3} + \cdots$$

• Channel quality across frequencies

$$|h_{f_2}|^2 = h_{f_2} h_{f_2}^*$$

• Choosing optimal frequency-of-operation

$$f_{opt} = \underset{f}{\operatorname{argmax}} \frac{\left|h_{f}\right|^{2}}{\operatorname{interference}_{f} + \operatorname{noise}_{f}}$$

What about interference and noise?

Wideband base station can measure it to make an informed decision

Chime – Frequency Configuration for LP-WANs in a Heartbeat

0.0024% of battery capacity

Implementation and Evaluation

Evaluation Testbed

Variation in synchronized phase measurements

Battery Life Benefits

Battery Life (in years) 5 Number of base stations => 230% increase in battery life

3.4 dB of SINR improvement over median frequency of operation

*Based on battery life model for transmit only clients from Charm

Messages per hour

+ 5 + 10 + 15

6

Coherent Combining

Other Results

- Comparison with interpolation using multiple frequencies
- CDF of accuracy of predicted SINR
- Ability to identify frequency nulls

More details in the paper ...

Related Work

Limitations

- Mobility of clients
- Leverages sparsity of multipath in urban settings
- Does not model fleeting reflectors

Chime – Frequency Configuration for LP-WANs in a Heartbeat

- First system which can estimate an optimal frequency using one packet
- Evaluated over a 0.329 sq.km. testbed at CMU campus in Pittsburgh.
- Achieved average 230% increase in battery life

https://www.witechlab.com/chime.html