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Trusting the cloud provider is difficult

• Attackers can exploit system bugs to steal data
• The cloud provider has their own interests (e.g., monetizing user data)
• Many administrators; some may be malicious
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Introduce TEEs to isolate computation
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• TEEs cannot be bypassed by software
- Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)

• Protect communication from the provider with cryptography

• Research proposals exist for GPU TEEs
- Graviton [OSDI`18],HIX [ASPLOS`19]

- Performance critical hardware unchanged

(TEE is Trusted Execution Environment)
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TEEs have limitations
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CPU TEES:
Cache Side Channels, 

Spectre attacks

Mitigations require heroic effort, especially for complex software
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Telekine addresses TEE limitations
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Telekine uses API-remoting instead of CPU TEEs

• Interpose on GPU API calls

• Application does not have to be modified, user does not need GPU

• Turn every API call into an RPC, executed by the remote machine

• Traffic is encrypted/authenticated; the proxy does not need protection
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TEEs still have limitations
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Telekine addresses communication timing channels

• TEEs do not consider communication side channels
- Securing the processor (CPU/GPU) does not secure communication

• GPU programing paradigm features frequent communication
- CPU-to-CPU communication is also vulnerable

• Communication patterns tend to leak timing information
- E.g., GPU kernel execution time
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In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

• How does Telekine remove that information?

• What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training

Replace GPU streams with new data-oblivious streams

Yes, we demonstrate a communication timing attack



Expanded image recognition
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Tensorflow/MXNet

Expanded image recognition
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Attack

Application

Information gained from kernel execution time
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In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

• How does Telekine remove that information?

• What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training

Replace GPU streams with new data-oblivious streams

Yes, we demonstrate a communication timing attack
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GPU API Proxy

Application

Timing information is abundant
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Other potential timing channel sources:
• Commands may be different sizes
• Application’s API use pattern may depend on secret data
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Data-oblivious streams
• Divide commands by type so they can be scheduled independently

- Adversary sees two independent streams of operations
- Telekine manages data dependencies between types

• Split and pad commands as necessary; enforce a uniform size
• Queue commands and send them (or no-ops) out deterministically

- E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms
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Data-oblivious streams
• Divide commands by type so they can be scheduled independently

- Adversary sees two independent streams of operations
- Telekine manages data dependencies between types

• Split and pad commands as necessary; enforce a uniform size
• Queue commands and send them (or no-ops) out deterministically

- E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms
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In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

• How does Telekine remove that information?

• What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training

Replace GPU streams with new data-oblivious streams

Yes, we demonstrate a communication timing attack



Testbeds

The cloud machine (Austin, Texas):
Intel i9-9900K, 8 cores @3.60GHz
32GB of RAM 
Radeon RX VEGA 64 GPU with 8GB of RAM

Client (Austin, Texas):
Intel Xeon E3-1270 v6, 4 cores @3.8GHz
32GB of RAM

Geo-distributed client (Dallas, Texas):
Vultr cloud VM, 8 vCPUS
32GB of RAM

877Mbps, 12ms RTT 1Gbps, various RTTs

Real WAN testbed Simulated WAN testbed

(RTT is “Roundtrip Time”)



We compare Telekine to an insecure baseline:
running on the GPU server without protections

Workloads:

• Data movement vs. GPU work microbenchmark

• Neural net inference on MXNet:
- ResNet50[He et. al 2016], InceptionV3[Szegedy et. al 2016], DenseNet [Huang et. al 2017]

• Neural net training on MXNet:
- (Same networks as above)

• Graph analytics on Galois:
- BFS, PageRank, SSSP (across 1 and 2 GPUs)



MXNet neural net inference (Real WAN)

• User sends a batch of images to be classified

• Baseline: user sends batch to remote MXNet 

• Telekine: user sends batch to local MXNet
- Telekine remotes computation to the GPU
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ResNet50 InceptionV3 DenseNetResNet50 InceptionV3 DenseNet

1.23X 1.08X 1.22X

MXNet neural net training

• Large dataset of images, processed in batches of size 64

• Baseline: data set is on the cloud machine, passed to MXNet

• Telekine: data set is on a client, passed to MXNet instance
- Telekine connects that instance to the remote GPU
- As a result Telekine uses a consistent 533 Mb/s network bandwidth

(Real WAN)
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MXNet GPU 
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Overheads are low because GPUs overlap the extra work with computation
• E.g., CUs can keep processing while the DMA engine performs transfers



MXNet neural net training breakdown (Simulated WAN)
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Telekine: Secure Computing with Cloud GPUs

• Eliminates communication timing channels with data-oblivious streams

• Transparent to applications because it maintains GPU API semantics 

• Has modest performance overheads for level of security provided

Thanks!



Backup slides follow



MXNet training RTT sensitivity (Simulated WAN)

• RTT to cloud provider can vary

• The effect in performance depends on the workload

RTT ResNet50 InceptionV3 Densenet
10ms 1.19X 1.10X 1.22X
20ms 1.29X 1.13X 1.37X
30ms 1.44X 1.16X 1.49X
40ms 1.53X 1.18X 1.66X
50ms 1.62X 1.30X 2.09X



Attack accuracy for batched inference
• GPU kernels operate on an entire batch

- Cannot measure kernel execution time for 
individual images

• Task: correctly identify the class with the most 
images
- Accuracy varies with how many more images 

there are (purity)
- Batches of 32, four classes
- Images selected from target class up to “Purity”
- Batch filled out with images from other three 

classes

Batch size Purity Accuracy

1 100% 42%

32 25% 29%

32 80% 50%

32 100% 65%



Communication vs GPU work (Simulated WAN) 

• Copy16MB to the GPU

• Compute for x-axis seconds

• Copy16MB from the GPU
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