
Telekine: Secure Computing with
Cloud GPUs

Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu,
Christopher J. Rossbach, Emmett Witchel

NSDI 2020

Trusting the cloud provider is difficult

• Attackers can exploit system bugs to steal data
• The cloud provider has their own interests (e.g., monetizing user data)
• Many administrators; some may be malicious

Recognition
Results

Avoiding trust in the cloud provider is difficult

Tensorflow/MXNet

Recognition
Results

Neural Net
Computation

OS/Hypervisor allows provider
to see user’s secret data

Trusted Untrusted
Legend:

Data
Trusted

Introduce TEEs to isolate computation

Tensorflow/MXNet

Recognition
Results

• TEEs cannot be bypassed by software
- Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)

• Protect communication from the provider with cryptography

• Research proposals exist for GPU TEEs
- Graviton [OSDI`18],HIX [ASPLOS`19]

- Performance critical hardware unchanged

(TEE is Trusted Execution Environment)

TEE

Neural Net
Computation TEE

Trusted Untrusted
Legend:

Data
Trusted

TEEs have limitations

Tensorflow/MXNet

Recognition
Results

Neural Net
Computation

TEE

TEE

CPU TEES:
Cache Side Channels,

Spectre attacks

Mitigations require heroic effort, especially for complex software

Trusted Untrusted
Legend:

Data
Trusted

Telekine addresses TEE limitations

Tensorflow/MXNet

Recognition
Results

Neural Net
Computation TEE

GPU
API

Proxy

Trusted Untrusted
Legend:

Data
Trusted

Telekine uses API-remoting instead of CPU TEEs

• Interpose on GPU API calls

• Application does not have to be modified, user does not need GPU

• Turn every API call into an RPC, executed by the remote machine

• Traffic is encrypted/authenticated; the proxy does not need protection

Tensorflow/MXNet

Recognition
Results

Neural Net
Computation TEE

GPU
API

Proxy

Trusted Untrusted
Legend:

Data
Trusted

TEEs still have limitations

Tensorflow/MXNet

Recognition
Results

Neural Net
Computation TEE

GPU
API

Proxy

All TEES:
Communication timing

attacks

Trusted Untrusted
Legend:

Data
Trusted

Telekine addresses communication timing channels

• TEEs do not consider communication side channels
- Securing the processor (CPU/GPU) does not secure communication

• GPU programing paradigm features frequent communication
- CPU-to-CPU communication is also vulnerable

• Communication patterns tend to leak timing information
- E.g., GPU kernel execution time

TEE
TEE

TEE

TEE

TEE

TEETEE

In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

• How does Telekine remove that information?

• What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training

Replace GPU streams with new data-oblivious streams

Yes, we demonstrate a communication timing attack

Expanded image recognition

Tensorflow/MXNet

Recognition
Results

Neural Net
Computation

GPU TEE
GPU
API

Proxy

Trusted Untrusted
Legend:

Data
Trusted

Tensorflow/MXNet

Expanded image recognition

Recognition
Results

GPU TEE

Neural Net
State/Code

memcpy()

launchKernel(1)
.
.

launchKernel(n)

memcpy() Recognition
Results

Start

Start

Kernel execution
times!

[Encrypted
Result]

Done

Trusted Untrusted
Legend:

Data
Trusted

Done

GPU
API

Proxy

GPU raises interrupt
on kernel completionGPU

Stream

Attack

Application

Information gained from kernel execution time

0
10
20
30
40
50
60
70
80
90

2 3 4 5 6 7 8

A
cc

ur
ac

y
(%

)

Number of Classes

Classification Accuracy

GPU Kernel timing classifier Random Guess

Kernel timing
classifier

Image
class

1.6X

1.6X

Start

Done

In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

• How does Telekine remove that information?

• What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training

Replace GPU streams with new data-oblivious streams

Yes, we demonstrate a communication timing attack

Tensorflow/MXNet

Timing information is abundant

Recognition
Results

GPU TEE

Neural Net
State/Code

memcpy()

launchKernel(1)
.
.

launchKernel(n)

memcpy() Recognition
Results

Done

Start

Start

Done GPU
API

Proxy

Trusted Untrusted
Legend:

Data
Trusted

GPU
Stream

GPU API Proxy

Application

Timing information is abundant

memcpy()

Start

Done
launchKernel()

memcpy()

GPU TEE

Trusted Untrusted
Legend:

Data
Trusted

GPU
Stream

Operations are
distinguishable because of

the hardware they use

MMIO

DMA

DMA

GPU raises interrupt
on kernel completion

Other potential timing channel sources:
• Commands may be different sizes
• Application’s API use pattern may depend on secret data

Application

GPU API Proxy

Data-oblivious streams

GPU TEE

memcpy()

launchKernel()

memcpy()

LibTelekine

memcpy queue

launchKernel queue

GPU
stream

GPU
stream

MMIO

DMA

Trusted Untrusted
Legend:

Data
Trusted

GPU
Stream

Data-oblivious
Stream

Data-oblivious streams
• Divide commands by type so they can be scheduled independently

- Adversary sees two independent streams of operations
- Telekine manages data dependencies between types

• Split and pad commands as necessary; enforce a uniform size
• Queue commands and send them (or no-ops) out deterministically

- E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms

GPU API Proxy

Application

GPU TEE

memcpy()

launchKernel()

memcpy()

LibTelekine

memcpy queue

launchKernel queue

GPU
stream

GPU
stream

MMIO

DMA

Trusted Untrusted
Legend:

Data
Trusted

Data-oblivious
Stream

Data-oblivious streams
• Divide commands by type so they can be scheduled independently

- Adversary sees two independent streams of operations
- Telekine manages data dependencies between types

• Split and pad commands as necessary; enforce a uniform size
• Queue commands and send them (or no-ops) out deterministically

- E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms

GPU API Proxy

Application

GPU TEE

memcpy()

launchKernel()

memcpy()

LibTelekine

memcpy queue

launchKernel queue

GPU
stream

GPU
stream

MMIO

DMA

Trusted Untrusted
Legend:

Data
Trusted

Data-oblivious
Stream

In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

• How does Telekine remove that information?

• What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training

Replace GPU streams with new data-oblivious streams

Yes, we demonstrate a communication timing attack

Testbeds

The cloud machine (Austin, Texas):
Intel i9-9900K, 8 cores @3.60GHz
32GB of RAM
Radeon RX VEGA 64 GPU with 8GB of RAM

Client (Austin, Texas):
Intel Xeon E3-1270 v6, 4 cores @3.8GHz
32GB of RAM

Geo-distributed client (Dallas, Texas):
Vultr cloud VM, 8 vCPUS
32GB of RAM

877Mbps, 12ms RTT 1Gbps, various RTTs

Real WAN testbed Simulated WAN testbed

(RTT is “Roundtrip Time”)

We compare Telekine to an insecure baseline:
running on the GPU server without protections

Workloads:

• Data movement vs. GPU work microbenchmark

• Neural net inference on MXNet:
- ResNet50[He et. al 2016], InceptionV3[Szegedy et. al 2016], DenseNet [Huang et. al 2017]

• Neural net training on MXNet:
- (Same networks as above)

• Graph analytics on Galois:
- BFS, PageRank, SSSP (across 1 and 2 GPUs)

MXNet neural net inference (Real WAN)

• User sends a batch of images to be classified

• Baseline: user sends batch to remote MXNet

• Telekine: user sends batch to local MXNet
- Telekine remotes computation to the GPU

Batch Size ResNet50 InceptionV3 DenseNet
1
8

64

ResNet50 InceptionV3 DenseNet
10.0X 6.6X 7.7X

ResNet50 InceptionV3 DenseNet
10.0X 6.6X 7.7X
3.4X 2.2X 2.5X

1.0X 1.1X 1.0X

MXNet

MXNet GPU
TEE

Trusted Untrusted
Legend:

Data
Trusted

ResNet50 InceptionV3 DenseNetResNet50 InceptionV3 DenseNet

1.23X 1.08X 1.22X

MXNet neural net training

• Large dataset of images, processed in batches of size 64

• Baseline: data set is on the cloud machine, passed to MXNet

• Telekine: data set is on a client, passed to MXNet instance
- Telekine connects that instance to the remote GPU
- As a result Telekine uses a consistent 533 Mb/s network bandwidth

(Real WAN)

MXNet

MXNet GPU
TEE

Overheads are low because GPUs overlap the extra work with computation
• E.g., CUs can keep processing while the DMA engine performs transfers

MXNet neural net training breakdown (Simulated WAN)

ResNet50 InceptionV3 DenseNet

1.23X 1.08X 1.22X

1 1 1
1.10 1.06

1.131.15
1.07

1.161.19
1.10

1.22

0.0X

0.4X

0.8X

1.2X

1.6X

ResNet50 InceptionV3 DenseNet

Sl
ow

do
w

n

Baseline Add API Remoting Add Encryption Telekine
(Real WAN)

10ms RTT

Telekine: Secure Computing with Cloud GPUs

• Eliminates communication timing channels with data-oblivious streams

• Transparent to applications because it maintains GPU API semantics

• Has modest performance overheads for level of security provided

Thanks!

Backup slides follow

MXNet training RTT sensitivity (Simulated WAN)

• RTT to cloud provider can vary

• The effect in performance depends on the workload

RTT ResNet50 InceptionV3 Densenet
10ms 1.19X 1.10X 1.22X
20ms 1.29X 1.13X 1.37X
30ms 1.44X 1.16X 1.49X
40ms 1.53X 1.18X 1.66X
50ms 1.62X 1.30X 2.09X

Attack accuracy for batched inference
• GPU kernels operate on an entire batch

- Cannot measure kernel execution time for
individual images

• Task: correctly identify the class with the most
images
- Accuracy varies with how many more images

there are (purity)
- Batches of 32, four classes
- Images selected from target class up to “Purity”
- Batch filled out with images from other three

classes

Batch size Purity Accuracy

1 100% 42%

32 25% 29%

32 80% 50%

32 100% 65%

Communication vs GPU work (Simulated WAN)

• Copy16MB to the GPU

• Compute for x-axis seconds

• Copy16MB from the GPU

0X

2X

4X

6X

8X

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Sl
ow

do
w

n

GPU Computation (in seconds, logscale)
Telekine

10ms RTT

