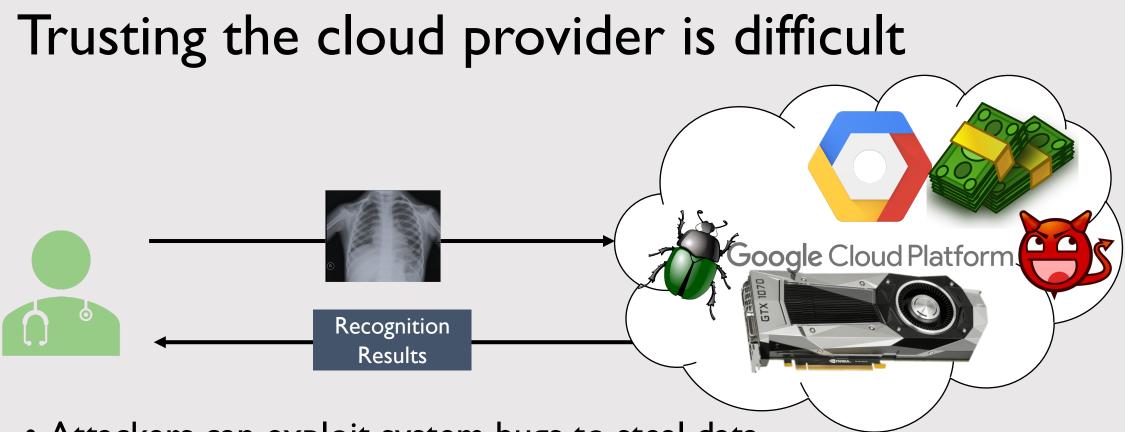


Telekine: Secure Computing with Cloud GPUs

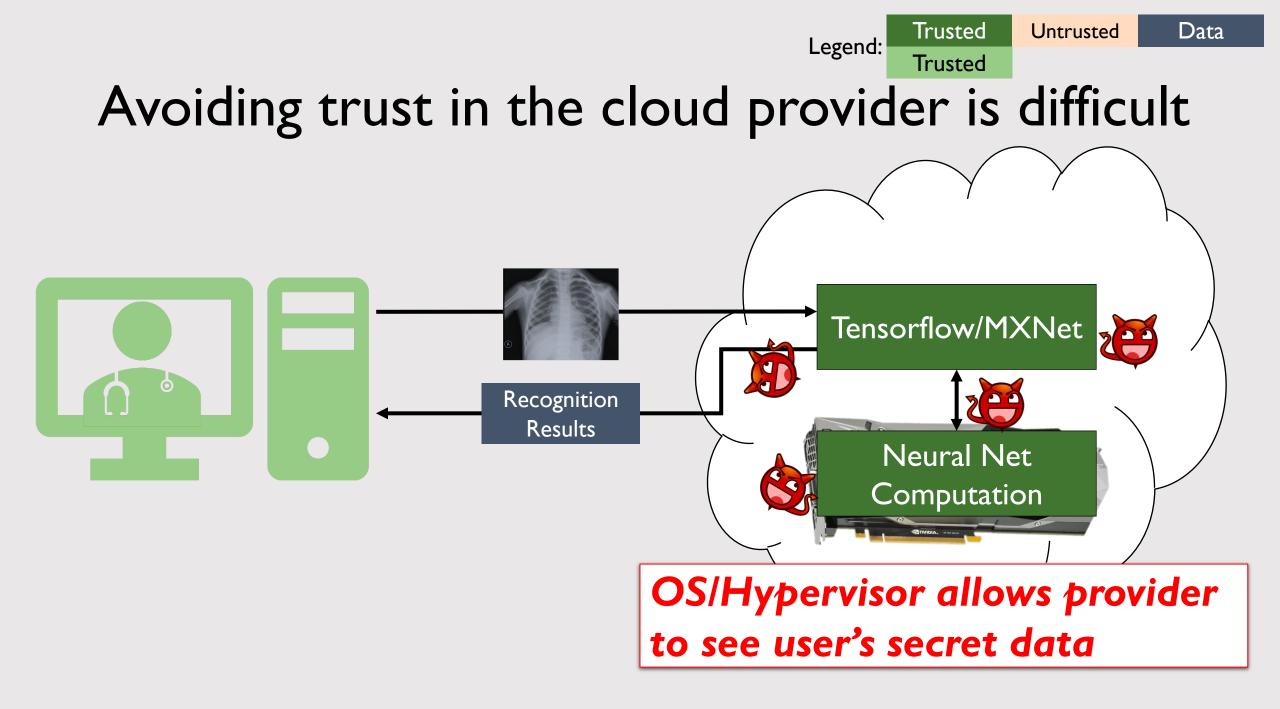
NSDI 2020

Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J. Rossbach, Emmett Witchel

> vmware[.] RESEARCH



- Attackers can exploit system bugs to steal data
- The cloud provider has their own interests (e.g., monetizing user data)
- Many administrators; some may be malicious



Introduce TEEs to isolate computation

Untrusted

Data

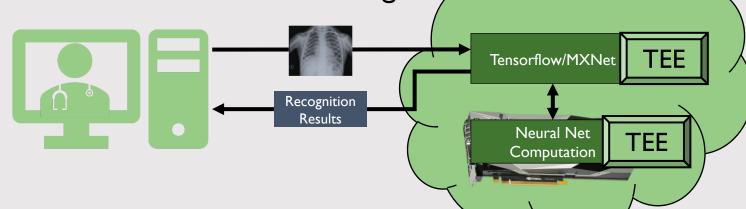
Trusted

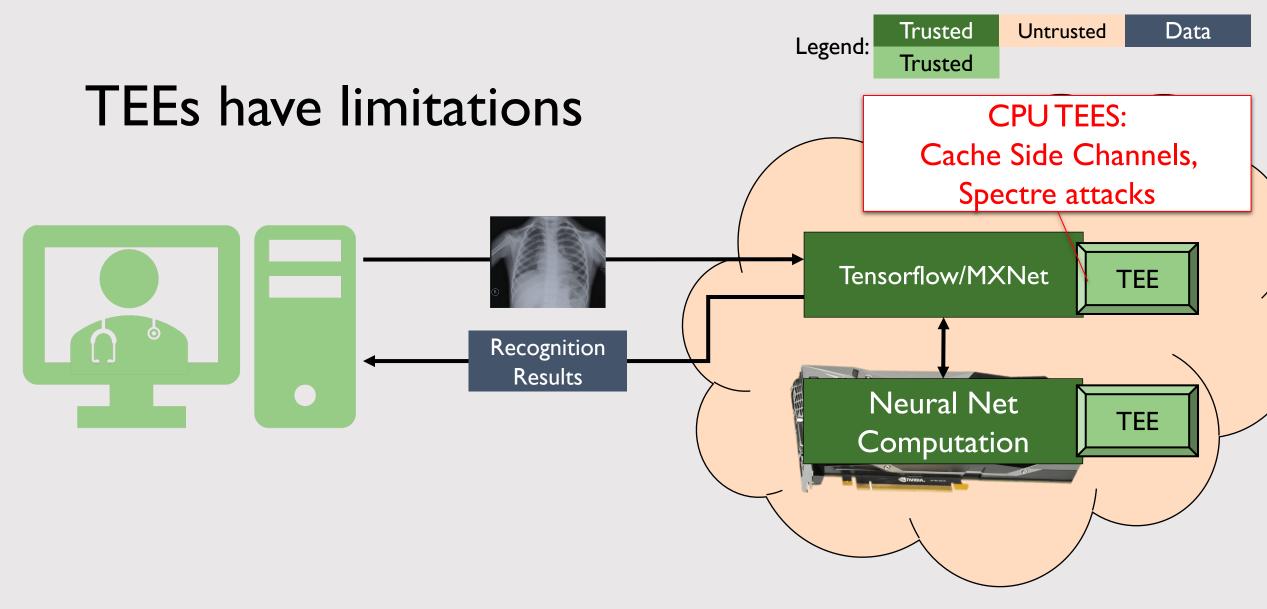
Trusted

Legend:

(TEE is Trusted Execution Environment)

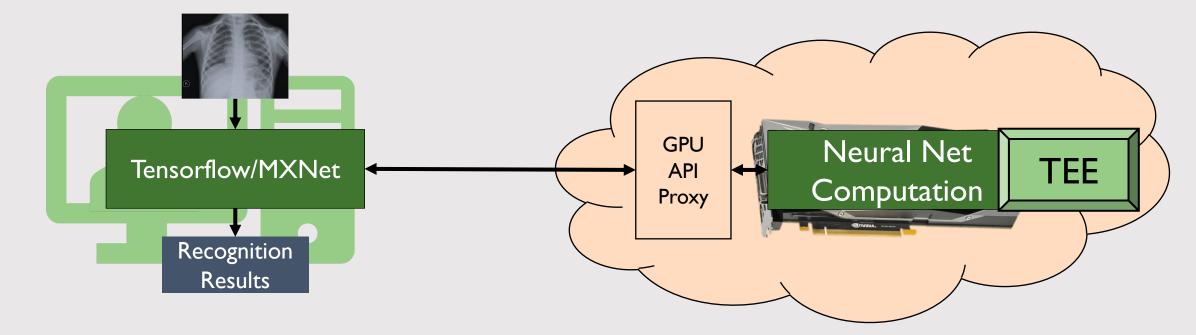
- TEEs cannot be bypassed by software
 - Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)
- Protect communication from the provider with cryptography
- Research proposals exist for GPU TEEs
 - Graviton [OSDI'18], HIX [ASPLOS'19]
 - Performance critical hardware unchanged





Mitigations require heroic effort, especially for complex software

Telekine addresses TEE limitations



Telekine uses API-remoting instead of CPU TEEs

Trusted

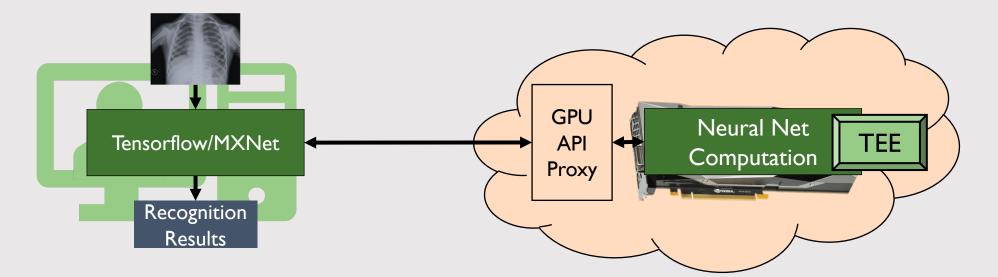
Trusted

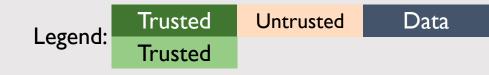
Legend:

Untrusted

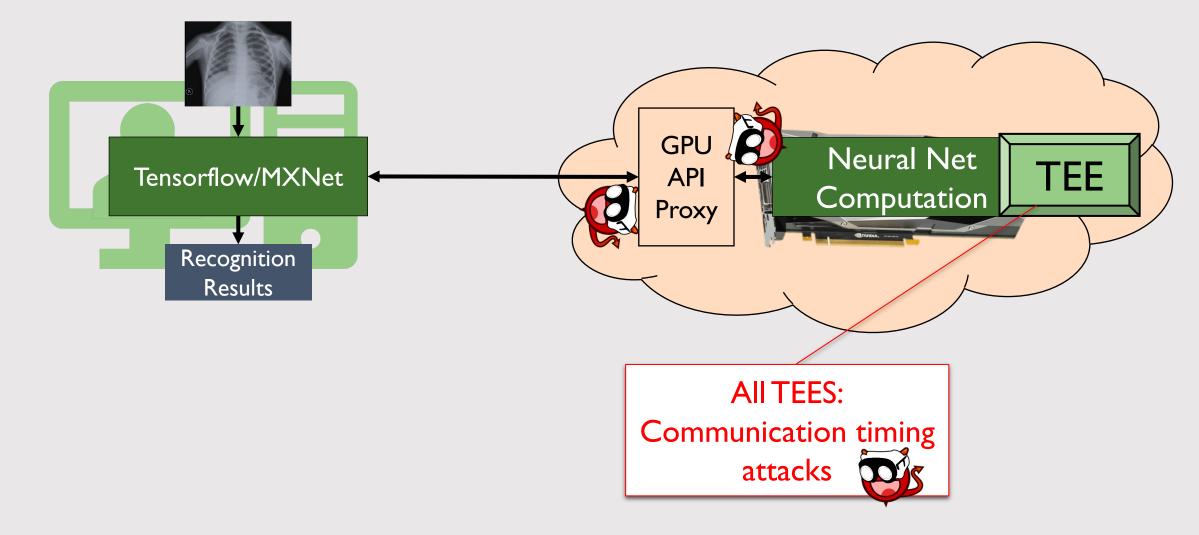
Data

- Interpose on GPU API calls
- Application does not have to be modified, user does not need GPU
- Turn every API call into an RPC, executed by the remote machine
- Traffic is encrypted/authenticated; the proxy does not need protection



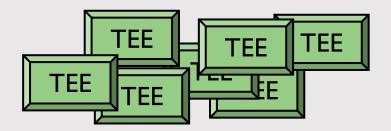


TEEs still have limitations



Telekine addresses communication timing channels

- TEEs do not consider communication side channels
 - Securing the processor (CPU/GPU) does not secure communication
- GPU programing paradigm features frequent communication
 - CPU-to-CPU communication is also vulnerable
- Communication patterns tend to leak timing information
 - E.g., GPU kernel execution time



In the rest of the talk we will answer:

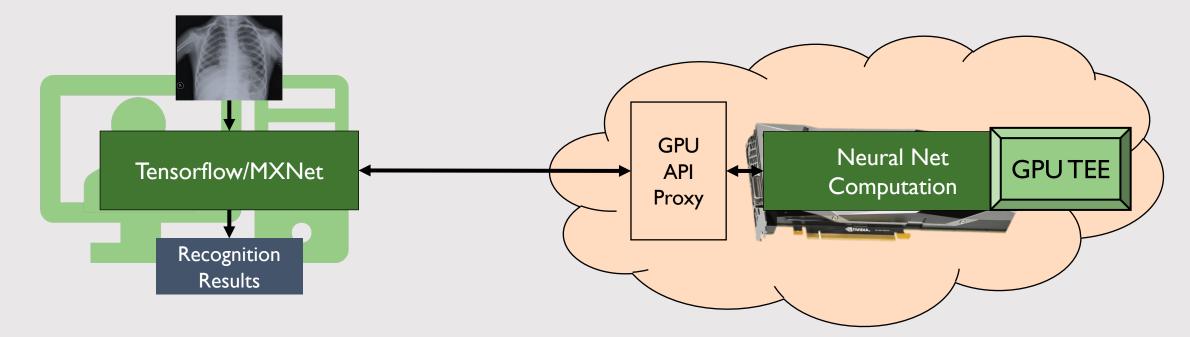
- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?

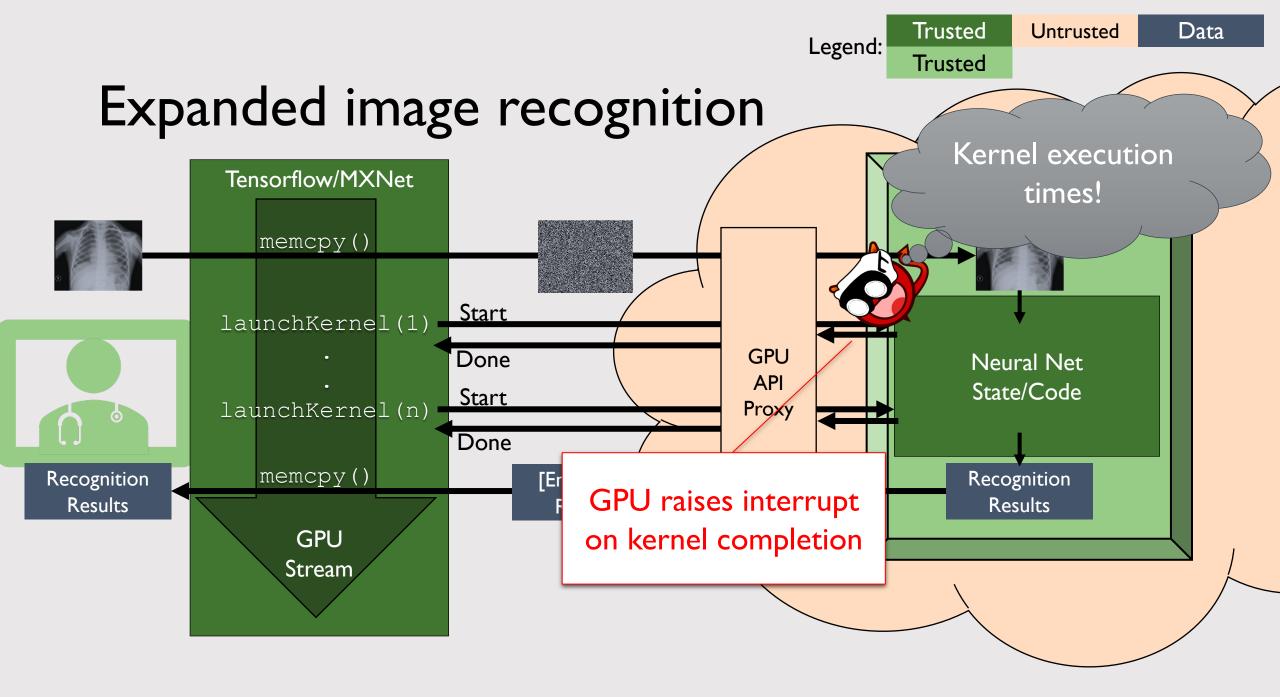
Replace GPU streams with new data-oblivious streams

• What are Telekine's overheads?

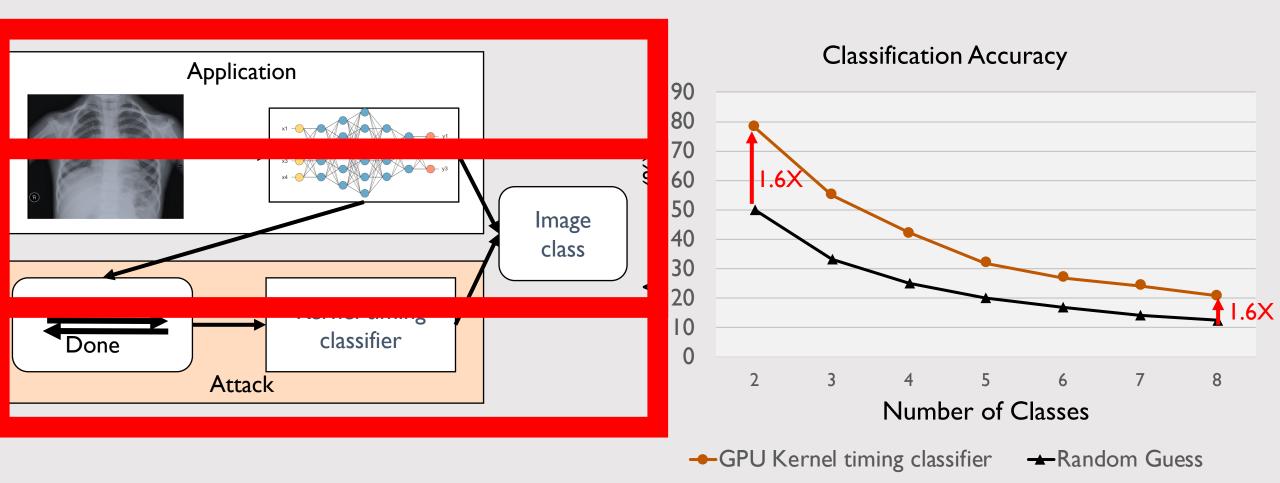
Overheads are reasonable: ~20% for neural network training

Expanded image recognition





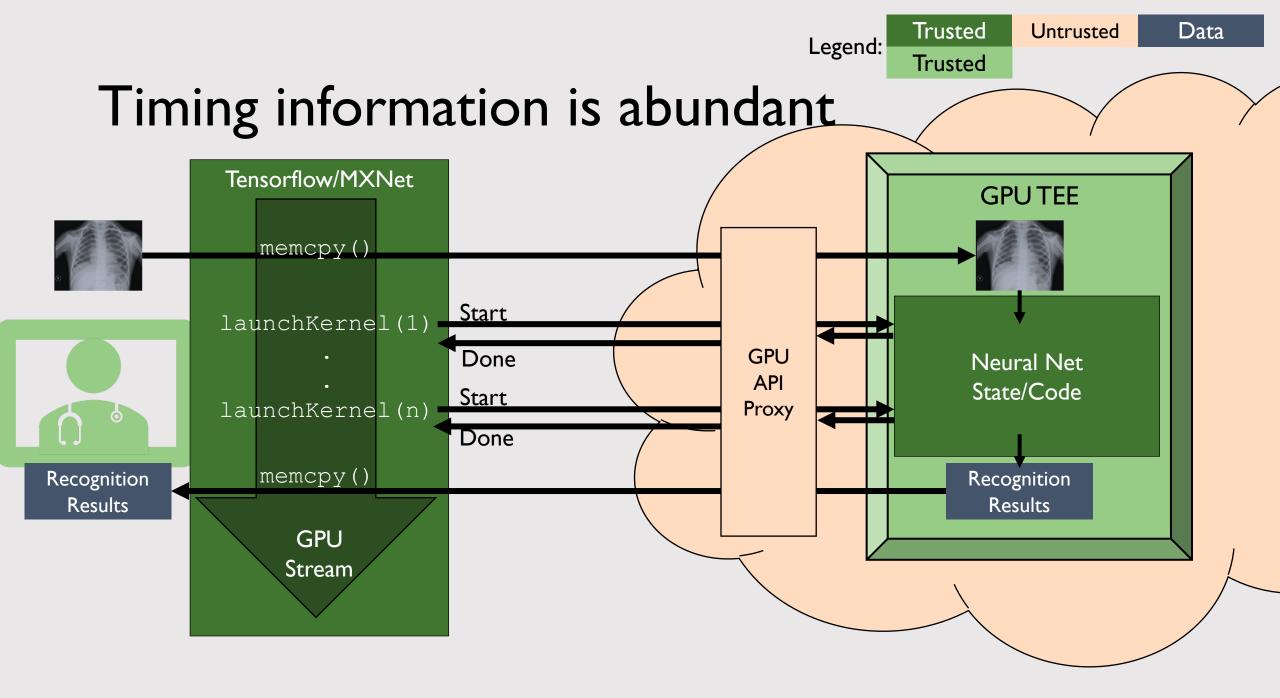
Information gained from kernel execution time

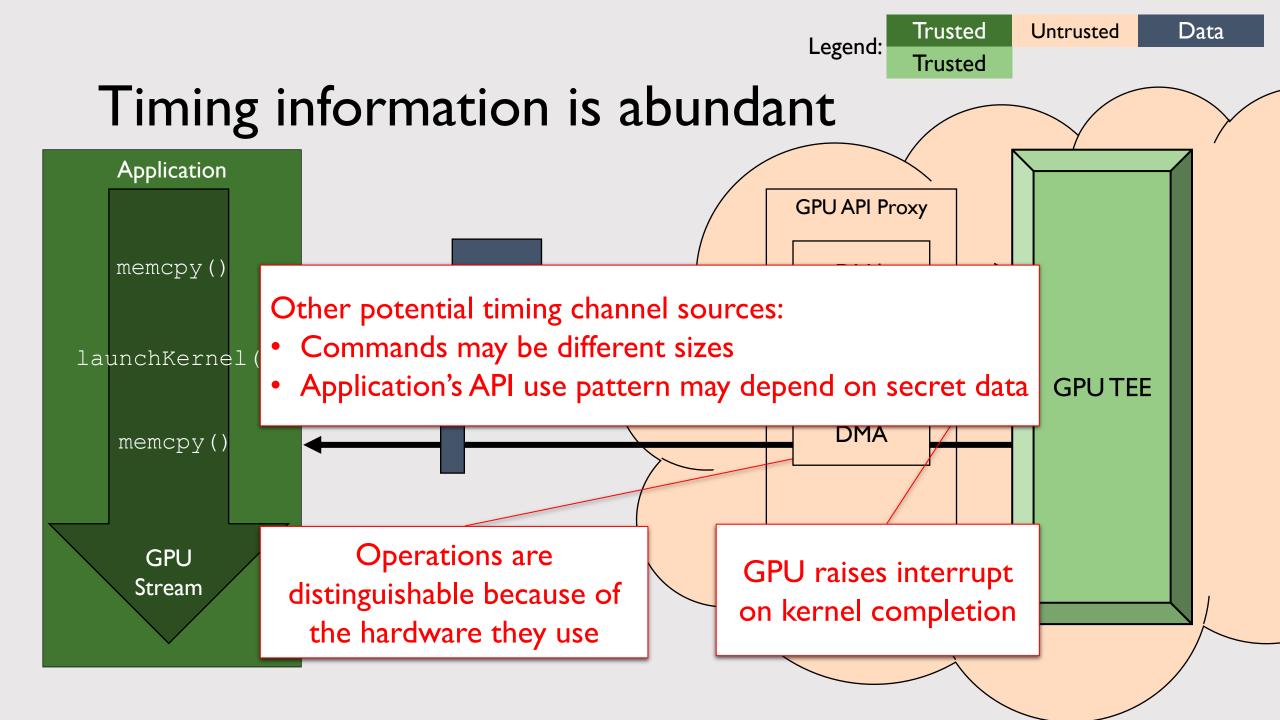


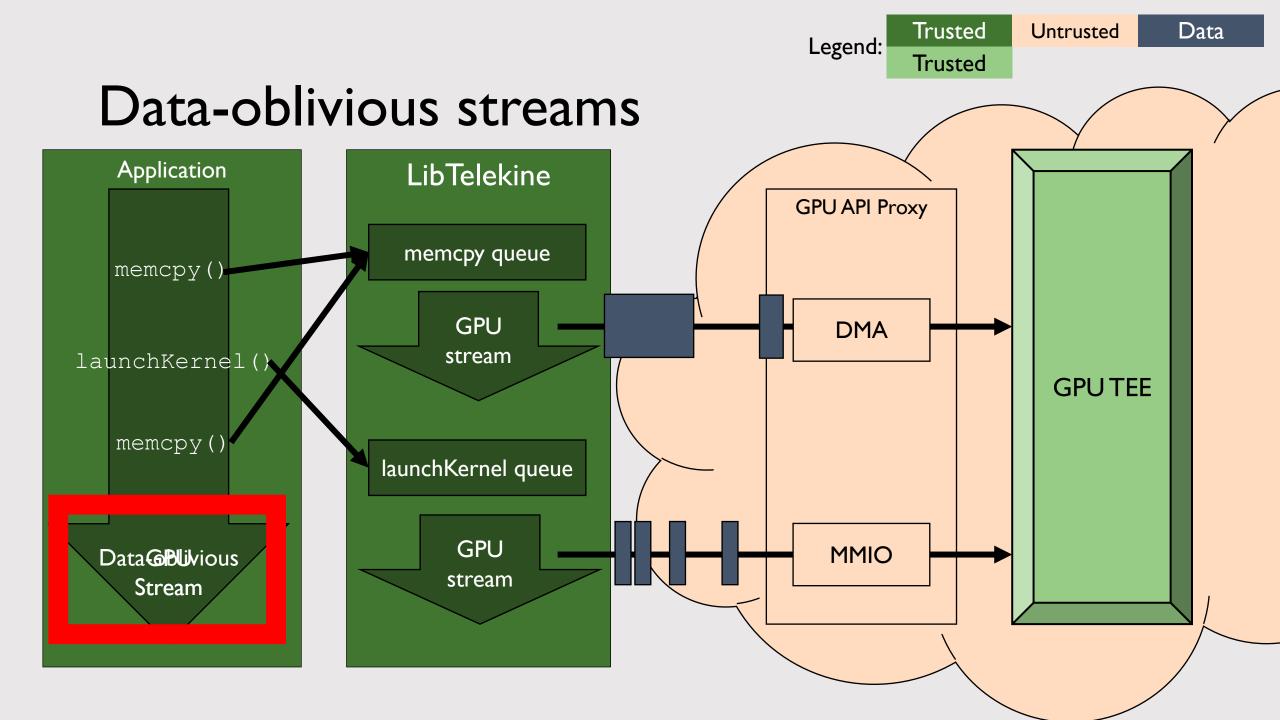
In the rest of the talk we will answer:

- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?

Overheads are reasonable: ~20% for neural network training



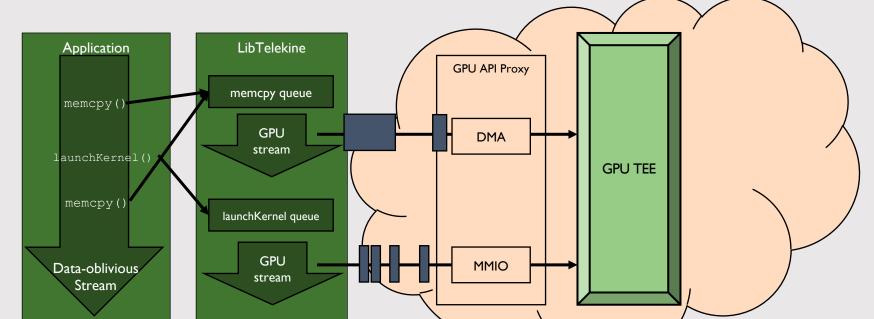




Legend: Trusted Untrusted Data

Data-oblivious streams

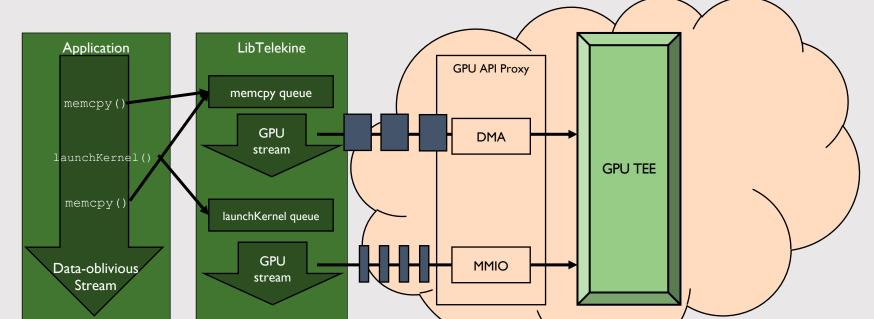
- Divide commands by type so they can be scheduled independently
 - Adversary sees two independent streams of operations
 - Telekine manages data dependencies between types
- Split and pad commands as necessary; enforce a uniform size
- Queue commands and send them (or no-ops) out deterministically
 - E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms



Legend: Trusted Untrusted Data

Data-oblivious streams

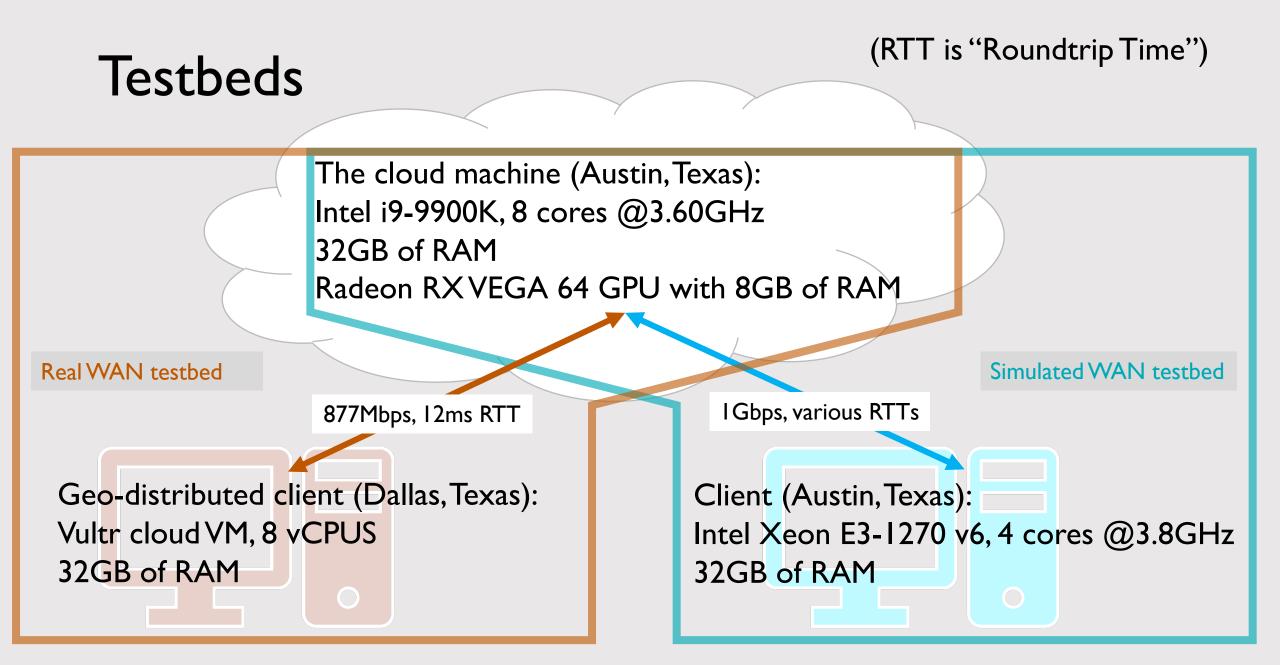
- Divide commands by type so they can be scheduled independently
 - Adversary sees two independent streams of operations
 - Telekine manages data dependencies between types
- Split and pad commands as necessary; enforce a uniform size
- Queue commands and send them (or no-ops) out deterministically
 - E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms



In the rest of the talk we will answer:

- Can information be extracted from GPU communication patterns? Yes, we demonstrate a communication timing attack
- How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams
- What are Telekine's overheads?

Overheads are reasonable: ~20% for neural network training



We compare Telekine to an insecure baseline: running on the GPU server without protections

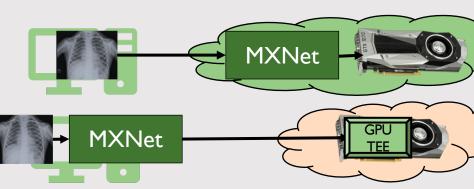
Workloads:

- Data movement vs. GPU work microbenchmark
- Neural net inference on MXNet:
 - ResNet50[He et. al 2016], InceptionV3[Szegedy et. al 2016], DenseNet [Huang et. al 2017]
- Neural net training on MXNet:
 - (Same networks as above)
- Graph analytics on Galois:
 - BFS, PageRank, SSSP (across I and 2 GPUs)

MXNet neural net inference (Real WAN)

- User sends a batch of images to be classified
- Baseline: user sends batch to remote MXNet
- Telekine: user sends batch to local MXNet
 - Telekine remotes computation to the GPU

Batch Size	ResNet50	InceptionV3	DenseNet
I	10.0X	6.6X	7.7X
8	3.4X	2.2X	2.5X
64	I.0X	I.IX	I.0X



Untrusted

Trusted

Trusted

Legend:

Data

MXNet neural net training (Real WAN)

• Large dataset of images, processed in batches of size 64

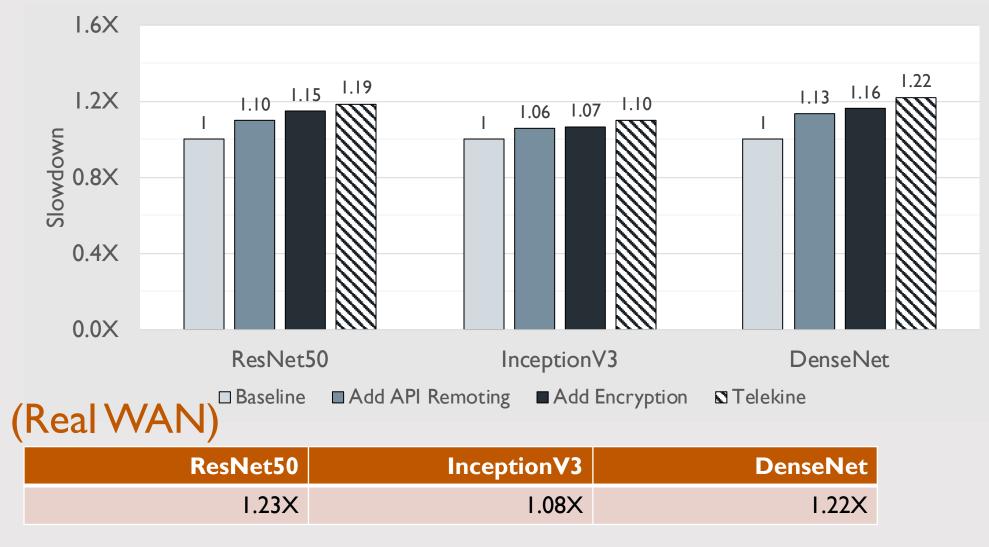
Overheads are low because GPUs overlap the extra work with computation
E.g., CUs can keep processing while the DMA engine performs transfers

TEIEKINE CONNECTS that instance to the remote Gro

- As a result Telekine uses a consistent 533 Mb/s network bandwidth

DenseNet	InceptionV3	ResNet50
I.22X	I.08X	I.23X

MXNet neural net training breakdown (Simulated WAN)



Telekine: Secure Computing with Cloud GPUs

• Eliminates communication timing channels with data-oblivious streams

• Transparent to applications because it maintains GPU API semantics

• Has modest performance overheads for level of security provided

Thanks!

Backup slides follow

MXNet training RTT sensitivity (Simulated WAN)

- RTT to cloud provider can vary
- The effect in performance depends on the workload

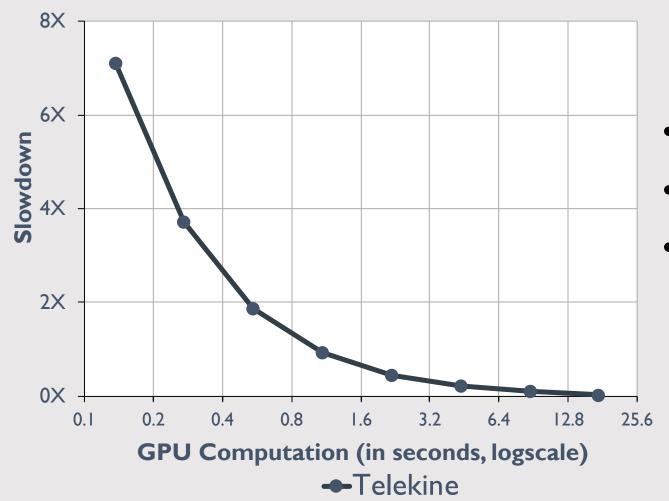
RTT	ResNet50	InceptionV3	Densenet
10ms	1.19X	1.10X	I.22X
20ms	I.29X	1.13X	I.37X
30ms	I.44X	1.16X	I.49X
40ms	I.53X	1.18X	I.66X
50ms	1.62X	I.30X	2.09X

Attack accuracy for batched inference

- GPU kernels operate on an entire batch
 - Cannot measure kernel execution time for individual images
- Task: correctly identify the class with the most images
 - Accuracy varies with how many more images there are (purity)
 - Batches of 32, four classes
 - Images selected from target class up to "Purity"
 - Batch filled out with images from other three classes

Batch size	Purity	Accuracy
I	100%	42%
32	25%	29%
32	80%	50%
32	100%	65%

Communication vs GPU work (Simulated WAN)



- Copy I 6MB to the GPU
- Compute for x-axis seconds
- Copy I 6MB from the GPU