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Trusting the cloud provider is difficult
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* Attackers can exploit system bugs to steal data
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* The cloud provider has their own interests (e.g., monetizing user data)

* Many administrators; some may be malicious
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Avoiding trust in the cloud provider is difficult
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OS/Hypervisor allows provider
to see user’s secret data
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Introduce TEEs to isolate computation

(TEE is Trusted Execution Environment)
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* TEEs cannot be bypassed by software
- Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)

* Protect communication from the provider with cryptography

* Research proposals exist for GPU TEEs

- Graviton [ospris], HIX [aspLos 19]
- Performance critical hardware unchanged
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TEEs have limitations CPU TEES:

Cache Side Channels,
Spectre attacks
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Mitigations require heroic effort, especially for complex software
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Telekine addresses TEE limitations
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Legend:

Trusted

Telekine uses APl-remoting instead of CPU TEEs

* Interpose on GPU API calls

* Application does not have to be modified, user does not need GPU

* Turn every API call into an RPC, executed by the remote machine

* Traffic is encrypted/authenticated; the proxy does not need protection
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TEEs still have limitations
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Telekine addresses communication timing channels

* TEEs do not consider communication side channels
- Securing the processor (CPU/GPU) does not secure communication

* GPU programing paradigm features frequent communication
- CPU-to-CPU communication is also vulnerable

* Communication patterns tend to leak timing information
- E.g., GPU kernel execution time
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In the rest of the talk we will answer:

* Can information be extracted from GPU communication patterns!?
Yes, we demonstrate a communication timing attack

* How does Telekine remove that information?
Replace GPU streams with new data-oblivious streams
* What are Telekine’s overheads!?

Overheads are reasonable: ~20% for neural network training
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Expanded image recognition
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Expanded image recognition
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Information gained from kernel execution time
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In the rest of the talk we will answer:

* Can information be extracted from GPU communication patterns?
Yes, we demonstrate a communication timing attack

* How does Telekine remove that information?
Replace GPU streams with new data-oblivious streams
* What are Telekine’s overheads!?

Overheads are reasonable: ~20% for neural network training
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Timing information is abundan
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Application
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Timing information is abundant
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Other potential timing channel sources:
* Commands may be different sizes
* Application’s APl use pattern may depend on secret data
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Data-oblivious streams
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Data-oblivious streams

* Divide commands by type so they can be scheduled independently
- Adversary sees two independent streams of operations
- Telekine manages data dependencies between types

* Split and pad commands as necessary; enforce a uniform size

* Queue commands and send them (or no-ops) out deterministically
- E.g.,launch 32 kernels every |5ms, memcpy |MB both directions every 30ms
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Data-oblivious streams

* Divide commands by type so they can be scheduled independently
- Adversary sees two independent streams of operations
- Telekine manages data dependencies between types

* Split and pad commands as necessary; enforce a uniform size

* Queue commands and send them (or no-ops) out deterministically
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In the rest of the talk we will answer:

* Can information be extracted from GPU communication patterns?
Yes, we demonstrate a communication timing attack

* How does Telekine remove that information?
Replace GPU streams with new data-oblivious streams

* What are Telekine’s overheads?

Overheads are reasonable: ~20% for neural network training



(RTT is “Roundtrip Time”)
Testbeds

The cloud machine (Austin, Texas):

Intel i9-9900K, 8 cores @3.60GHz
32GB of RAM

Radeon RXVEGA 64 GPU with 8GB of RAM

Real WAN testbed / - Simulated WAN testbed

877Mbps, 12ms RTT | Gbps, various RTTs
Geo-distributed client (Dallas, Texas): Client (Austin, Texas):
Vultr cloud VM, 8 vCPUS Intel Xeon E3-1270 v6,4 cores @3.8GHz

32GB of RAM 32GB of RAM



We compare Telekine to an insecure baseline:
running on the GPU server without protections

Workloads:

e Data movement vs. GPU work microbenchmark

* Neural net inference on MXNet:
- ResNet50[He et.al 2016], InceptionV 3[szegedy et.al 2016], DenseNet [Huang et.al 2017]

* Neural net training on MXNet:
- (Same networks as above)

* Graph analytics on Galois:
- BFS, PageRank, SSSP (across | and 2 GPUs)
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MXNet neural net inference (Real VWAN)

Legend:

* User sends a batch of images to be classified

e Baseline: user sends batch to remote MXNet "
e Telekine: user sends batch to local MXNet m

- Telekine remotes computation to the GPU

ResNet50 | InceptionV3
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MXNet neural net training (Real VWAN)

* Large dataset of images, processed in batches of size 64

(1

Overheads are low because GPUs overlap the extra work with computation
* E.g.,CUs can keep processing while the DMA engine performs transfers

- As a result Telekine uses a consistent 533 Mb/s network bandwidth

1.23X 1.08X 1.22X



MXNet neural net training breakdown (Simulated VWAN)

|.6X

o
X
2

Slowdown
o
0o
X

0.4X
0.0X
ResNet50 InceptionV3 DenseNet
OBaseline B Add APl Remoting B Add Encryption & Telekine
(Real WAN)

1.23X 1.08X 1.22X

|Oms RTT



Telekine: Secure Computing with Cloud GPUs

* Eliminates communication timing channels with data-oblivious streams
* Transparent to applications because it maintains GPU API semantics

* Has modest performance overheads for level of security provided

Thanks!



Backup slides follow



MXNet training RTT sensitivity (Simulated VWAN)

* RTT to cloud provider can vary

* The effect in performance depends on the workload

ResNet50 | InceptionV3

|Oms [.19X |.10X 1.22X
20ms 1.29X |.13X |.37X
30ms |.44X l.16X |.49X
40ms |.53X |.18X |.66X
50ms 1.62X |.30X 2.09X



Attack accuracy for batched inference

* GPU kernels operate on an entire batch

- Cannot measure kernel execution time for
individual images

* Task: correctly identify the class with the most [ g.tch size k|| Aaaues)
Images | 100% 42%

- Accuracy varies with how many more images 32 25% 29%
there are (purity) 32 80% 50%

- Batches of 32, four classes 32 100% 65%

Images selected from target class up to “Purity”

Batch filled out with images from other three
classes



Communication vs GPU work (Simulated VWAN)
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* Copyl6MB to the GPU
* Compute for x-axis seconds
* Copyl6MB from the GPU



