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Low-Power Wireless Personal Area Networks 
(LoWPANs)
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~1999: LoWPAN research 
begins, eschewing the Internet 
architecture

~2008: IP 
introduced in 
LoWPANs

~2012: IP becomes 
standard in LoWPANs

2020: This Paper
We show how to make TCP
work well in LoWPANs
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What is a LoWPAN?
LoWPAN = Low-Power Wireless Personal Area Network
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Types of Wireless Networks
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What are LoWPANs used for?

Structural monitoring [2]

Volcano monitoring [1]

[1] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., & Welsh, M. Fidelity and yield in a volcano monitoring sensor network. In OSDI 2006.
[2] Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., & Turon, M. Health monitoring of civil infrastructures using wireless sensor networks. In IPSN 2007.
[3] Hull, B., Jamieson, K., & Balakrishnan, H. Mitigating congestion in wireless sensor networks. In SenSys 2004.
[4] https://www.cisco.com/c/en/us/products/collateral/routers/1000-series-connected-grid-routers/datasheet-c78-741312.html
[5] https://www.automatedhome.co.uk/new-products/thread-a-new-wireless-networking-protocol-for-the-home.html

Indoor environment [3]
Smart home and IoT [5]
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Smart grid [4]



Challenges of Low-Power Networks

Resource 
Constraints

• Limited CPU/RAM

Energy 
Constraints

• Duty-cycled radio

Link-Layer 
Constraints

• Small MTU

• Low wireless range

• Multi-hop wireless
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Low-Power Embedded Devices

• 32 KiB Data Memory (RAM)

• 250 kb/s IEEE 802.15.4 radio

• 32-bit ARM Cortex M0+ @ 48 MHz

• 256 KiB Code Memory (ROM)
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Hamilton Sensor 
Platform [KACKZMC18]

≈ 5 centimeters
Q: How should devices like 
these connect to the Internet?

We show TCP/IP works well



LoWPAN Research has Steered Clear of TCP

Expected Reasons for Poor Performance:

• TCP is too heavy

• TCP’s features aren’t necessary and bring additional overhead

• TCP performs poorly in the presence of wireless loss
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Finding: TCP Can Perform Well in LoWPANs

Expected Reasons for Poor Performance:

• TCP is too heavy

• TCP’s features aren’t necessary 
and bring additional overhead

• TCP performs poorly in the 
presence of wireless loss

• These would be fundamental

Actual Reasons for Poor Performance:

• LoWPANs have a small L2 frame 
size → high header overhead

• Hidden terminals

• Link-layer scheduling not 
designed with TCP in mind

• These problems are fixable
within the paradigm of TCP!
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We show how to address these issuesWe show why these don’t actually apply



Roadmap

1. Overview

2. Why the expected reasons for poor TCP performance don’t apply

3. Addressing the actual reasons for poor performance

4. Evaluation and conclusions
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Implementation of TCP

• Start with the mature, full-scale TCP 
implementation in FreeBSD

• Re-engineer key parts for the 
embedded platform

• Resulting implementation: TCPlp
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RFC 2525: Known TCP 
Implementation Problems



Resource Consumption of TCPlp

• TCPlp requires:
• ≈ 32 KiB of code memory (ROM)

• ≈ 0.5 KiB of data memory (RAM) per connection

• Hamilton platform has:
• 256 KiB of code memory (ROM)

• 32 KiB of data memory (RAM)
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How Large do TCP Buffers Need to Be?

• Bandwidth-Delay Product 
(BDP)

• Empirical BDP: ≈ 2-3 KiB
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TCP, including buffers, fits comfortably in memory



How Many In-Flight Segments?

• Bandwidth-delay product is 2-3 KiB

• Each segment is ≈ 250 B to 500 B

• ≈ 4 to 12 in-flight TCP segments

• This affects TCP’s congestion control
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TCP New Reno in a LoWPAN

• Congestion window recovers to BDP quickly (because BDP is small)
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TCP in a LoWPAN is more resilient to wireless losses

MSS = 462 B MSS = 250 B, RED/ECN



Roadmap

1. Overview

2. Why the expected reasons for poor TCP performance don’t apply

3. Addressing the actual reasons for poor performance

4. Evaluation and conclusions
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Overview of Techniques

• Zero-Copy Send Buffer

• In-Place Reassembly Queue

Resource 
Constraints

• Adaptive Duty Cycle

• Link-Layer Queue Management

Energy 
Constraints

• Atypical Maximum Segment Size

• Link Retry Delay

Link-Layer 
Constraints
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Focus of this Talk

• Zero-Copy Send Buffer

• In-Place Reassembly Queue

Resource 
Constraints

• Adaptive Duty Cycle

• Link-Layer Queue Management

Energy 
Constraints

• Atypical Maximum Segment Size

• Link Retry Delay

Link-Layer 
Constraints
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Duty-Cycling the Radio

• The duty cycle is the proportion of time that the radio is listening or 
transmitting

• OpenThread uses a receiver-initiated duty cycle protocol
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Receiver-Initiated Radio Duty Cycle
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B W

Frame

• Packets can be sent 
to W at any time

Wall-Powered Node
Radio is Always On

Battery-Powered Node
Radio is Duty-Cycled



Receiver-Initiated Radio Duty Cycle
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W

Frame

• Packets can be sent 
to W at any time

• Packets for B wait 
until B is listening

Wall-Powered Node
Radio is Always On

DataReqB

Battery-Powered Node
Radio is Duty-Cycled

Indicates B is listening

B’s idle duty cycle is determined by how 
frequently it sends DataReqs



How does Radio Duty Cycle affect TCP?

• Let’s compare HTTP/TCP to CoAP

• Setup: B sends W a DataReq
frame every 1000 ms

• HTTP request requires two
round trips

• CoAP request requires one
round trip
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Solution: Adaptive Radio Duty Cycle

• Use HTTP/TCP protocol state to adapt the duty cycle

• Send DataReqs more frequently when a packet is expected
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Without Adaptive Duty Cycle With Adaptive Duty Cycle



Multiple Wireless Hops
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Mitigating Hidden Terminals

• If transmission fails (no link-layer ACK), wait a random amount before 
retrying
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Multiple Wireless Hops
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Roadmap

1. Overview

2. Why the expected reasons for poor TCP performance don’t apply

3. Techniques to improve TCP performance in LoWPANs

4. Evaluation and conclusions
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TCP uses the Link Efficiently

• 75 kb/s goodput over one hop
• 5–40x more than prior studies

• Within 25% of a reasonable 
upper bound with headers
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TCP uses Energy Efficiently

• We used TCP and CoAP for a sense-and-send task, and measured 
radio duty cycle over a 24-hour period
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Both TCP and CoAP have a 
radio duty cycle of ≈2%



Now that TCP is a Viable Option…

1. We should reconsider the use of lightweight protocols that emulate 
part of TCP’s functionality (e.g., CoAP)

2. TCP may influence the design of LoWPAN networked systems
• Rethink gateway-based architectures

• TCP allows for better interoperability

3. UDP-based protocols will still be used in LoWPANs
• For applications where specialized protocols substantially outperform TCP
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Summary

1. We implement TCPlp, a full-scale TCP stack for LoWPAN devices

2. We explain why expected reasons for poor TCP performance don’t apply

3. We show how to address the actual reasons for poor TCP performance

4. We show that, once these issues are resolved, TCP performs comparably 
to LoWPAN-specialized protocols
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