
AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading

YoungGyoun Moon, Seungeon Lee,
Muhammad Asim Jamshed*, KyoungSoo Park

School of Electrical Engineering, KAIST
* Intel Labs

TCP is widely adopted in modern networks

2
[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)
[2] RDMA over Commodity Ethernet at Scale (SIGCOMM ‘16)

 Used by 95+% of WAN traffic and 50+% of datacenter traffic [1][2]

 The gap between network bandwidth and CPU capacity widens

2009 2019

1GbE 100GbE

100x

CPU efficiency of TCP stack becoming increasingly important

 Recent TCP stacks adopt numerous optimization techniques

• e.g., optimized packet I/O, kernel-bypassing, zero-copying

 Unfortunately, fundamentally limited by TCP conformance overhead

Suboptimal CPU efficiency in TCP stacks

3

Reliable data transfer

Buffer management

Congestion/flow control

Connection management

Host CPU

TCP overhead in short-lived connections

4

 Short TCP flows dominates the Internet

• 80% of cellular network traffic is smaller than 8KB [1]

 Connection management overhead in short TCP flows

DataplaneHost

Network

Connection setup Connection teardown

SYN FIN
Handling control packets

Managing flow states

Overheads

[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)

>60%

Connection
management

CPU breakdown of mTCP + Redis

• A single key-value lookup per connection

TCP overhead in Layer-7 (L7) proxying

 L7 proxies are widely adopted (e.g., load balancer, API gateway)

 Payload relaying overhead in L7 proxies

5

DMA overhead

TCP processing

Overheads

TCP

NIC

App Memcpy from/to app

Connection 2Connection 1

L7 load balancer
48 cores48 cores

100GbE =

DMA overhead

TCP processingTCP

NIC

App Memcpy from/to appMemcpy from/to app

Connection 2Connection 1

L7 load balancer
48 cores44 cores

100GbE =

splice()

“connection splicing”

Our work: AccelTCP

6

Connection 2Connection 1

splice()

Dataplane

Connection setup Connection teardown

SYN FINConnection management

Connection splicing

NIC offload of mechanical operations for TCP conformance

Existing TCP NIC offloads

 Full-stack TCP offload engine (TOE)

• Poor connection scalability

• Difficult to extend (e.g., adding a new congestion control algorithm)

 TCP Segmentation Offload (TSO) and Large Receive Offload (LRO)

• Saves significant CPU cycles for processing large messages

7

Our work: AccelTCP

8

Extend the benefit of NIC offload to general TCP applications

?

? ?

Small-message connections Large-message connections

Server/clients

Proxies

Typical TCP offloads
(e.g., TSO, LRO)

AccelTCP

 A dual-stack TCP architecture with stateful TCP offloading

• Selectively offloads peripheral TCP operations to NICs

AccelTCP design overview

9

Host stack
Central TCP operations

Peripheral TCP operations
NIC stack

 Required for data transfer

 Required for protocol conformance

Reliable data transfer

Buffer management

Congestion/flow control

Segmentation/checksum

Connection setup/teardown

Connection splicing

 A dual-stack TCP architecture with stateful TCP offloading

• Selectively offloads peripheral TCP operations to NICs

AccelTCP design overview

10

Host stack

Reliable data transfer

Buffer management

Congestion/flow control

Segmentation/checksum

Connection setup/teardown

Connection splicing

NIC stack

Synchronizing flow states

Limited NIC resources

Challenges

Challenge #1. Synchronizing flow states

 Connection management and splicing are stateful TCP operations

• Transmission control block (TCB) needs to be updated

 Challenging to maintain flow state consistency across two stacks

• Huge DMA cost to deliver sync messages

11

Dataplane

DataplaneHost

NIC

TCB

TCB

TCB syncs

Challenge #1. Synchronizing flow states

 Our approach: Single ownership of a TCP flow and its TCB

 Key ideas:

• TCB sync occurs only in between the different phases

• TCB sync messages are piggybacked with payload packets

12

Dataplane

Dataplane

Dataplane

Host

NIC

Connection setup Data transfer Connection teardown
time

TCB TCBTCB Payload TCB Payload

Challenge #2. Limited NIC resources

 Limited fast memory size

• For holding program instructions and connection states

• e.g., 8MB SRAM in Netronome Agilio LX

 Limited compute capacity

• Typical TCP stacks: 1000 - 3000 cycles/packet

 Performance drop by 30 - 80% in Agilio LX

13

Our approach: Minimize NIC dataplane complexity

Challenge #2. Limited NIC resources

14

Limited memory

Connection setup Use SYN cookie
 stateless operation

Limited CPU capacity

Minimize TCB on NIC

of concurrent flows:

10k 256k

Use fast hashing
(in hardware)

Connection teardown

Connection splicing
Differential

checksum update

Timer bitmap wheel

this talk

Tracking timeouts on NIC

 Required for TCP retransmission or last ACK timeout, TIME_WAIT

 No flow-to-core affinity A global data structure for tracking timeout

• Frequent timer registration incurs a huge lock contention

15

On-chip SRAM

…

Core 1

…

…

Core
2

…

…

Core
3

…

…

…

…

… … … Core
120

Gloabal flow
list/table

Timer bitmap wheel

16

timeout

…

core 1

core 2

core 3

core 4

core N

T =1ms

T=2ms

T=3ms

T=4ms

T=5ms
T=6ms

T=7ms

T=9ms

T=8ms

T=0ms

(core A)

(core B)

(core C)

scanned by

B1

 Efficient timer registration & invocation in NIC dataplane

3 flows added (RTO for FIN = 8ms)

flow bitmap (indexed by flow ID)

Host stack optimizations

1. User-level threading

• Avoid heavy context switching overhead between TCP stack and app

2. Opportunistic zero-copy

• Avoid socket buffer copy if packets can be delivered directly from/to app

3. Lazy TCB Creation

• Many fields of TCB (up to 700 bytes) are unused in single transaction case

 Our approach: Create a quasi-TCB (40 bytes) for a new connection

17

Check out our paper for more details

Implementation and experiment setup

 NIC stack: running on Netronome Agilio NICs

• 1,501 lines of C code and 195 lines of P4 code

 Host stack: extended mTCP to support NIC offloads

• Easy to port existing apps (connect() mtcp_connect())

• Experiment setup

• CPU: Xeon Gold 6142 (16-cores @ 2.6GHz)

• NIC: Netronome Agilio LX 40GbE x2

• Memory: 128GB DDR4 RAM

• Use up to 8 client machines (Xeon E5-2640 v3) to generate workload

18

Does AccelTCP support high connection rate?

19

 Throughput performance of a TCP server

• A single 64B packet transaction per connection

0

5

10

15

20

1 2 3 4 5 6 7 8

Tr
an

sa
ct

io
ns

/s
ec

 (x
10

6)

Number of CPU cores

2.2x

3x

3.4x
3.8x

NIC bottleneck

Do applications benefit from AccelTCP?

20

0.0

1.6

3.2

1 2 3 4 5 6 7 8

(M
tp

s)

CPU cores

mTCP AccelTCP

2.3x

0%

50%

100%

mTCP AccelTCP

TCP/IP Redis app

1/4

Redis under Facebook USR workload (flow size: < 20B)

Throughput CPU utilization

Do applications benefit from AccelTCP?

21

mTCP (8-core)

AccelTCP

6.2 Gbps

73.1 Gbps 11.8x

HAProxy under SpecWeb2009-like workload

Summary

22

github.com/acceltcp

shader.kaist.edu/acceltcp

 TCP performance limited by protocol conformance overhead
• Short-lived flows and L7 proxies cannot benefit from existing TCP offloads

 AccelTCP explores a new design space of NIC-assisted TCP stack
• Connection management and splicing can be offloaded to NIC

 AccelTCP significantly improves CPU efficiency of real-world apps
• 2.3x improvement with Redis, 12x improvement with HAproxy

Source code available:

