Diamond-Miner: Comprehensive Discovery of the Internet's Topology Diamonds

Kévin Vermeulen, Justin P. Rohrer, Robert Beverly, Olivier Fourmaux, Timur Friedman

USENIX NSDI 2020 26th February 2020

Motivation

- IP load balancing is prevalent:
 - Capacity

• Redundancy

- Existing techniques do not accurrately capture load balanced paths at Internet scale
- Bad idea of true resilience and structure of the Internet
- Diamond-Miner revealed 64% more links than existing Internet maps

Mapping diamonds today

• Single path probing: traceroute, Paris traceroute

• Multipath probing: MDA Paris traceroute

A toy example

Single path probing: traceroute, an incomplete technique

Multipath probing: MDA Paris traceroute, a hop by hop resolving technique

Α

VP

To resolve a node with 5% failure probability

Successors	1	2	
Probes	6	11	

TTL1 TTL2 TTL3 TTL4 TTL5

Multipath probing: MDA Paris traceroute, a hop by hop resolving technique

B

F

VP

To resolve a node with 5% failure probability

Successors	1	2	
Probes	6	11	

Mapping diamonds today

• Single path probing: traceroute, Paris traceroute

\rightarrow No statistical guarantees

• Multipath probing: MDA Paris traceroute

\rightarrow No Internet scale

 How to build a system that provides statistical guarantees at Internet Scale?

Roadmap

- Challenges
- Diamond-Miner
- Evaluation
- Conclusion

Contributions

 Diamond-Miner: a massively parallelized probing system to map diamonds at Internet scale providing statistical guarantees

Key Ideas

- No more resolving nodes TTL per TTL, resolves all of the nodes of the topology concurrently
- Round based algorithm:
 - Input: topology discovered by the previous round
 - Output: number of probes to send per TTL per destination prefix to achieve statistical guarantees

A toy example

Diamond-Miner

 VP

To resolve a node with 5% failure probability

Successors	1	2	
Probes	6	11	

Round 1: send

Round 2: compute

Round 2: send

Round 3: compute

Round 3: send

Round 4: compute

Key Ideas

- No more resolving nodes TTL per TTL, resolves all the nodes concurrently
- Round based algorithm:
 - Input: topology discovered by the previous round
 - Output: number of probes to send per TTL per destination prefix to achieve statistical guarantees

Scaling Diamond-Miner

- Perform the algorithm on all the /24s in parallel
- No more hop by hop probing constraints
- \rightarrow Decrease the time to completion

Roadmap

- ChallengesDiamond-Miner
- Evaluation
- Conclusion

Evaluation (Number of rounds)

 10 rounds → > 99% of resolved /24 prefixes

Probes sent and time to completion from a single vantage point for one snapshot

	Probes (billions)	Time to completion
Classic multipath (emulated)	5.9 B	64.3 years
Diamond-Miner	6.6 B	2.5 days

Multiple vantage points

Discovery in one week

	Vantage points	Nodes (millions)	Links (millions)	Probes (billions)
Yarrp	1	0.6	1.3	1.6
D-Miner	1	1.3	4.6	20.1
Yarrp	6	0.8	2.5	1.0
D-Miner	6	1.6	7.1	13.2

Discovery in one week

	Vantage points	Nodes (millions)	Links (millions)	Probes (billions)
D-Miner	6	1.6	7.1	13.2
Ark	~110	1.9	4.3	5.9

Roadmap

- Challenges
- Diamond-Miner
- Evaluation
- Conclusion

Takeaway

- First system capable of tracing diamonds at Internet scale with **statistical guarantees**
- Obtains the **most complete** IP-level topology view from a single server
- All our code is publicly available:
- <u>https://github.com/dioptra-io</u>

Evaluation (Intel Xeon Gold 5122 3.6 GHz, 8 cores)

• Most of the time after round 5 is spent in the computation

. 1 snapshot = 1 day

Motivation

- Resilience
- Security
- Socio-economic
- Basic science!

Ę																																
ī	1		1		1		1		1		1		1													1						
L	1		1	1	1		1		1		1		1													1	1	1				
							1	1	1		1		2	2	1	2	1	1										1				
										1	1							1					1	1	1			1				
			1	1	1					1								2		1	1	1	1		2	1		1	1			
			1		2	1	1			1		1	1	1	2			1		1						2	1					
			1	1	2		1			1		1			1		2	1		2			1	1	2		1	1	1			
					1	1	1			1		1			1	1	1			2		З	1		1							
			1	1	1					1	1	1								2		2			1							
L	1	1	1		1			1	1	1										1	1	1			1							
					1			1		1			1	1	1										1							
					1	1		1	1	1			1		1										1							
						1							1	1	1					1	1	1	1	1	2							
					1	1					1	1	1							1												
					1					1	2		З	2	1					1	1	1	2									
l					1					1					1								1						36			

References

- Augustin et al., Avoiding traceroute anomalies with Paris Traceroute. (IMC '06)
- Veitch et al., Failure control in multipath route tracing. (INFOCOM '09)
- Vermeulen et al,. Multilevel MDA-Lite Paris Traceroute (*IMC '18*)
- Beverly. Yarrp'ing the internet: Randomized high-speed active topology discovery (*IMC '16*)
- Claffy et al., Internet mapping: from art to science (Security Applications & Technology Conference for Homeland Security '09)

Laboratory Affiliations

- Kevin Vermeulen, Olivier Fourmaux, and Timur Friedman are associated with Sorbonne Université, CNRS, Laboratoire d'informatique de Paris 6, LIP6, F-75005 Paris, France.
- Kevin Vermeulen and Timur Friedman are associated with the Laboratory of Information, Networking and Communication Sciences, LINCS, F-75013 Paris, France.
- Justin P. Rohrer and Robert Beverly are associated with the department of Computer Science of Naval Postgraduate School.

