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Ryoan’s goals
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○ Without trusting the application
○ Without trusting the platform (OS, Hypervisor)

◎ Support cooperation between service providers
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Threat model
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Ryoan’s world
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Ryoan applications

Modules
◎ Request oriented
◎ Well defined unit of work

○ One request→one result
○ e.g, 1 email, 1 photo

Composable
◎ Modules can be connected to build services
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Intel SGX in 2 minutes (or less)

◎ Provides Enclaves
○ Regions of a process's virtual address 

space

◎ Enclaves
○ Can only be accessed by enclave code
○ Still have access to the rest of memory

◎ Attestations
○ Hardware signed hashes of initial code 

and data
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Enclave Code’s View

Other Code’s View

Ryoan Instance
Module

Enclave (Inaccessible)



◎ SGX provides unforgeable attestation of the 
sandbox

◎ Statements Ryoan makes about the module 
can now be trusted

Chain of trust
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RyoanAttests

ModuleRyoan Attests



Ryoan’s view of SGX

◎ SGX gives you:
○ Trusted computation on secret data

◎ Ryoan uses SGX to give you:
○ Guarantees on Untrusted computation
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Confining untrusted code
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Problem:
◎ Platform can read secrets out 

of memory

Solution:
◎ Execute module inside of an 

enclave
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Problem:
◎ Modules can use system calls 

to write out user data

Solution:
◎ NaCl modules call sandbox to 

access system calls
◎ Enforce encryption

Confining untrusted code

Sandbox

Module

write(                                  );
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Confining untrusted code

Sandbox

Module

write([CIPHERTEXT]);

Problem:
◎ Modules can use system calls 

to write out user data

Solution:
◎ NaCl modules call sandbox to 

access system calls
◎ Enforce encryption
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Modules cannot keep state

◎ Module life cycle imposed by Ryoan
○ Read, process, write, destroy 

◎ Sandbox enforces one request per module execution
○ Represent a complete unit of work
○ Only contain content from one user
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Initialize Read 
Input Process Write

Output
Destroy
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Covert and side channels

◎ Output, via some externally 
visible property of execution

◎ Ryoan:  Software covert  
channels
○ System calls
○ Execution time

◎ Hardware covert channels: 
○ Hardware vendor’s responsibility
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System call covert channel
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Module

write(8bytes); write(16bytes); 
write(8bytes); write(16bytes); 
write(16bytes); write(16bytes); 
write(8bytes);

  8bytes 0

16bytes 1

0101110

0101110



Eliminating system call channel

◎ Remove modules ability to make system calls

◎ Ryoan performs all data input and output independent of 
the content
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Confined; Module cannot make system calls. 

Initialize Read 
Input Process Done

Ryoan
makes input 

available Ryoan flushes all output
Destroy



Initialization is expensive

Confined; Module cannot make system calls. 

Initialize Read 
Input
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Process Done

Checkpoint

Restore 
Checkpoint

ClamAV (virus scanner):
25.0 seconds to initialize
  0.1 seconds to process a request



Confined compatibility API

In-memory file API
◎ File system operations 

in memory
◎ Examples:

○ Temp files
○ Preexisting files

Dynamic Memory
◎ Modules can call 

mmap for “new” 
memory

◎ Return memory from 
a pre-allocated pool.

39
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open, close, read, write, stat, 
lseek, unlink, mkdir, rmdir, 
getdents
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Evaluation

◎ Implementation requires SGX v2 
instructions (spec: Fall 2014, coming soon)
○ Dynamic memory allocation/protection

◎ SGX performance model 
○ Measured SGX v1 latencies on our hardware
○ Estimated SGX v2 latencies (sensitivity study in 

paper)
○ Flush TLB on all system calls, page faults, and 

interrupts
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Ryoan summary

◎ Allows untrusted code to operate on secret 
data on untrusted platforms

◎ Sandbox with SGX
○ Eliminates explicit channels

◎ Module can’t call platform
○ Eliminates covert channels

◎ Mostly backwards compatible
○ Sandbox code implements system calls
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◎ Output Size is a (configurable) fixed 
function of input size.
○ Output is padded or truncated by Ryoan
○ Always predefined in the specification
○ Examples (n bytes of input)

◉ Virus Scanner output: n bytes + 1 bit
◉ Machine Translation  output: 2n bytes 

Output Size

57

Module

n bytes n bytes

n bytes n/2 bytes


