
Ryoan: A Distributed Sandbox for
Untrusted Computation on Secret Data

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu,
Simon Peter, Emmett Witchel

1

Disease risk assessment: Trust issues

2

Disease Risk

Disease risk assessment: Trust issues

3

Disease Risk

Classification
Result

Disease risk assessment: Trust issues

4

Disease Risk

Classification
Result

Disease risk assessment: Trust issues

5

Disease Risk

Classification
Result

Disease risk assessment: Trust issues

6

Disease Risk

Classification
Result

Disease risk assessment: Trust issues

7

Disease Risk

Classification
Result

Talk outline

Introduction
Controlling untrusted modules
Covert and side channels
Evaluation

8

Ryoan’s goals

9

◎ Provide user data secrecy
○ Without trusting the application
○ Without trusting the platform (OS, Hypervisor)

◎ Support cooperation between service providers

Userspace

Platform ()

Ryoan Sandbox

Ryoan’s goals

10

◎ Provide user data secrecy
○ Without trusting the application
○ Without trusting the platform (OS, Hypervisor)

◎ Support cooperation between service providers

Userspace

Platform ()

Ryōan-ji

11

Threat model

Users
◎ Don’t trust

service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

12

Everyone
◎ Trusts Ryoan
◎ Trusts Intel SGX

- User
- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Service Providers
◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Threat model

Users
◎ Don’t trust

service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

13

Everyone
◎ Trusts Ryoan
◎ Trusts Intel SGX

- User
- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Service Providers
◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Threat model

Users
◎ Don’t trust

service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

14

Everyone
◎ Trusts Ryoan
◎ Trusts Intel SGX

- User
- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Service Providers
◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Threat model

Users
◎ Don’t trust

service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

15

Service Providers
◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Everyone
◎ Trusts Ryoan
◎ Trusts Intel SGX

- User
- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

16

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

17

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

18

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

19

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Ryoan applications

Modules
◎ Request oriented
◎ Well defined unit of work

○ One request→one result
○ e.g, 1 email, 1 photo

Composable
◎ Modules can be connected to build services

20

Module

Talk outline

Introduction
Controlling untrusted modules
Covert and side channels
Evaluation

21

Intel SGX in 2 minutes (or less)

◎ Provides Enclaves
○ Regions of a process's virtual address

space

◎ Enclaves
○ Can only be accessed by enclave code
○ Still have access to the rest of memory

◎ Attestations
○ Hardware signed hashes of initial code

and data

22

Enclave Code’s View

Other Code’s View

Ryoan Instance
Module

Enclave (Inaccessible)

◎ SGX provides unforgeable attestation of the
sandbox

◎ Statements Ryoan makes about the module
can now be trusted

Chain of trust

23

RyoanAttests

ModuleRyoan Attests

Ryoan’s view of SGX

◎ SGX gives you:
○ Trusted computation on secret data

◎ Ryoan uses SGX to give you:
○ Guarantees on Untrusted computation

24

Confining untrusted code

25

Problem:
◎ Platform can read secrets out

of memory

Solution:
◎ Execute module inside of an

enclave

Module

26

Problem:
◎ Platform can read secrets out

of memory

Solution:
◎ Execute module inside of an

enclave

Enclave
Module

Confining untrusted code

27

Enclave

Module

Confining untrusted code

Problem:
◎ Module can copy secrets to

non-enclave memory

Solution:
◎ Restrict accessible memory

with a sandbox
○ Property of NaCl

28

Problem:
◎ Module can copy secrets to

non-enclave memory

Solution:
◎ Restrict accessible memory

with a sandbox
○ Property of NaCl

Sandbox
Module

Confining untrusted code

29

Problem:
◎ Modules can use system calls

to write out user data

Solution:
◎ NaCl modules call sandbox to

access system calls
◎ Enforce encryption

Confining untrusted code

Sandbox

Module

write();

30

Confining untrusted code

Sandbox

Module

write([CIPHERTEXT]);

Problem:
◎ Modules can use system calls

to write out user data

Solution:
◎ NaCl modules call sandbox to

access system calls
◎ Enforce encryption

31

Confining untrusted code

Problem:
◎ Modules can collude with

users to steal data

Solution:
◎ Don’t let modules keep state

between requests

ModuleModule

Disease Risk

Later

It’
s M

E!

32

Confining untrusted code

Problem:
◎ Modules can collude with

users to steal data

Solution:
◎ Don’t let modules keep state

between requests

ModuleModule

Disease Risk

Later

It’
s M

E!

Modules cannot keep state

◎ Module life cycle imposed by Ryoan
○ Read, process, write, destroy

◎ Sandbox enforces one request per module execution
○ Represent a complete unit of work
○ Only contain content from one user

33

Initialize Read
Input Process Write

Output
Destroy

Talk outline

Introduction
Controlling untrusted modules
Covert and side channels
Evaluation

34

Covert and side channels

◎ Output, via some externally
visible property of execution

◎ Ryoan: Software covert
channels
○ System calls
○ Execution time

◎ Hardware covert channels:
○ Hardware vendor’s responsibility

35

Module

System call covert channel

36

Module

write(8bytes); write(16bytes);
write(8bytes); write(16bytes);
write(16bytes); write(16bytes);
write(8bytes);

 8bytes 0

16bytes 1

0101110

0101110

Eliminating system call channel

◎ Remove modules ability to make system calls

◎ Ryoan performs all data input and output independent of
the content

37

Confined; Module cannot make system calls.

Initialize Read
Input Process Done

Ryoan
makes input

available Ryoan flushes all output
Destroy

Initialization is expensive

Confined; Module cannot make system calls.

Initialize Read
Input

38

Process Done

Checkpoint

Restore
Checkpoint

ClamAV (virus scanner):
25.0 seconds to initialize
 0.1 seconds to process a request

Confined compatibility API

In-memory file API
◎ File system operations

in memory
◎ Examples:

○ Temp files
○ Preexisting files

Dynamic Memory
◎ Modules can call

mmap for “new”
memory

◎ Return memory from
a pre-allocated pool.

39

Replaced system calls:
mmap

Replaced system calls:
open, close, read, write, stat,
lseek, unlink, mkdir, rmdir,
getdents

Confined compatibility API

In-memory file API
◎ File system operations

in memory
◎ Examples:

○ Temp files
○ Preexisting files

Dynamic Memory
◎ Modules can call

mmap for “new”
memory

◎ Return memory from
a pre-allocated pool.

40

Replaced system calls:
mmap

Replaced system calls:
open, close, read, write, stat,
lseek, unlink, mkdir, rmdir,
getdents

Confined compatibility API

In-memory file API
◎ File system operations

in memory
◎ Examples:

○ Temp files
○ Preexisting files

Dynamic Memory
◎ Modules can call

mmap for “new”
memory

◎ Return memory from
a pre-allocated pool.

41

Replaced system calls:
mmap

Replaced system calls:
open, close, read, write, stat,
lseek, unlink, mkdir, rmdir,
getdents

Talk outline

Introduction
Controlling untrusted modules
Covert channels
Evaluation

42

43

Moses
Classifier

Return
Results

Parse
Input

CombineDistribute

Health

 In: Genome/health data
Out: Disease risk

Translation

 In: French text
Out: English text

EmailImages

 In: Pictures
Out: Array of objects

 In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

44

Moses
Classifier

Return
Results

Parse
Input

CombineDistribute

Health

 In: Genome/health data
Out: Disease risk

Translation

 In: French text
Out: English text

EmailImages

 In: Pictures
Out: Array of objects

 In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

45

Moses
Classifier

Return
Results

Parse
Input

CombineDistribute

Health

 In: Genome/health data
Out: Disease risk

Translation

 In: French text
Out: English text

EmailImages

 In: Pictures
Out: Array of objects

 In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

46

Moses
Classifier

Return
Results

Parse
Input

CombineDistribute

Health

 In: Genome/health data
Out: Disease risk

Translation

 In: French text
Out: English text

EmailImages

 In: Pictures
Out: Array of objects

 In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

47

Moses
Classifier

Return
Results

Parse
Input

CombineDistribute

Health

 In: Genome/health data
Out: Disease risk

Translation

 In: French text
Out: English text

EmailImages

 In: Pictures
Out: Array of objects

 In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

Evaluation

◎ Implementation requires SGX v2
instructions (spec: Fall 2014, coming soon)
○ Dynamic memory allocation/protection

◎ SGX performance model
○ Measured SGX v1 latencies on our hardware
○ Estimated SGX v2 latencies (sensitivity study in

paper)
○ Flush TLB on all system calls, page faults, and

interrupts

48

49

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

50

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

51

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

52

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

53

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

Ryoan summary

◎ Allows untrusted code to operate on secret
data on untrusted platforms

◎ Sandbox with SGX
○ Eliminates explicit channels

◎ Module can’t call platform
○ Eliminates covert channels

◎ Mostly backwards compatible
○ Sandbox code implements system calls

54

55

56

(Backup Slides Follow)

◎ Output Size is a (configurable) fixed
function of input size.
○ Output is padded or truncated by Ryoan
○ Always predefined in the specification
○ Examples (n bytes of input)

◉ Virus Scanner output: n bytes + 1 bit
◉ Machine Translation output: 2n bytes

Output Size

57

Module

n bytes n bytes

n bytes n/2 bytes

