
Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage

Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert Ricci, and Ryan Stutsman

University of Utah



Introduction
● Kernel-bypass key-value stores offer < 10μs latency, > Mops/s throughput

• Fast because they’re just dumb?

● Problem: Leverage performance →  share between tenants
● Problem: Apps require rich data models. Ex: Facebook’s TAO

● Implement using gets & puts? → Data movement, client stalls

● Push code to key-value store? → Isolation costs limit density

● Splinter: Multi-tenant key-value store that code can be pushed to

● Tenants push type- & memory-safe code written in Rust at runtime

● > 1000 tenants/server, 3.5 Million ops/s, 9μs median latency
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Richer Data Models Come At A Price

3

Apps require rich data models in addition to performance

● Ex: Social graphs, Decision trees etc.

Key-value stores trade-off data model for performance

● Simple get()’s & put()’s over key-value pairs

Key-value store

get_friends(user)

Client

get()/put()

Hash Table Records

Thinner data model → Better performance
But do applications benefit?
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Extra Round-Trips (RTTs) Hurt Latency & Utilization

5

Example: Traverse tree with N nodes using gets

● One get() at each level of the tree → O(log N) RTTs

● Control flow depends on data → Client stalls during get()

Key-value store

Client

get()/put()

Hash Table Records

Network RTTs, dispatch are the main bottleneck ~10μs

● 1.5μs inside the server

So push code to storage?
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Why Not Push Compute To Storage?
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ISOLATION?

Key-value store

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
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             ….
             ….
 }
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             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn get_friends() {
             ….
             ….
             ….
 }

 fn classify() {
             ….
             ….
             ….
 }

Context Switches ~1.5µs 
Multi-tenancy → Need hardware isolation 

RPC Processing Time ~1.5µs 
Only native code will do 



What Do We Want From The Storage Layer?

● Extremely high tenant density

• Fine-grained resource allocation; 100s of CPU cycles, Kilobytes of memory

• Allow tenants to extend data model at runtime

• Low overhead isolation between tenants & storage layer
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Granularity of compute is steadily decreasing

Virtual machines → Containers → Lambdas



Splinter: A Multi-Tenant Key-Value Store

● Tenants can install and invoke extensions at runtime

• Extensions written in Rust

• Rely on type and memory safety for isolation, avoids context switch

• Implemented in ~9000 lines of Rust

• Supports two RPCs → install(ext_name) & invoke(ext_name)

• Also supports regular get() & put() RPCs → “Native” operations
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rustc rustcrustc

1000 Foot View Of Splinter

10

SplinterSplinter

Tenants

Tenant Hash Tables



1000 Foot View Of Splinter
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SplinterSplinter

Tenants

Tenant Hash Tables

Tenants push extensions
written in Rust

rustc rustcrustc

Splinter compiles,
loads extensions

Into address-space



rustc rustcrustc

1000 Foot View Of Splinter
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SplinterSplinter

Tenants

Tenant Hash Tables

Rust provides
memory-safety

Extensions do not
share state

Rust provides
memory-safety

Extensions do not
share state

Trust Boundary



rustc rustcrustc

1000 Foot View Of Splinter
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SplinterSplinter

Tenants

Tenant Hash Tables

Trust Boundary

Extensions receive
references to records

Each tenant sees
a custom key-value store



invoke(“aggregate”, K) sum: 64 bits

Simple Aggregation With Splinter
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V1[0] + V2[0] + V3[0]

Client

1024 Tenants
100 GB Data

Splinter Server

Native mode
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1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

Extension mode

get(K) K1 K2 K3K1 K2 K3
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Simple Aggregation With Splinter
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1024 Tenants
100 GB Data

Splinter Server
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multiget(                  )K1 K2 K3 V1 V2 V3

Native mode

1024 Tenants
100 GB Data
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Simple Aggregation With Splinter
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1024 Tenants
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Splinter Server
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Native mode
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100 GB Data

Splinter Server
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multiget(                  ) V1 V2 V3K1 K2 K3 invoke(“aggregate”, K) sum: 64 bits



Simple Aggregation With Splinter

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client
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1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

invoke(“aggregate”, K)

Native mode Extension mode

sum: 64 bits



Simple Aggregation With Splinter
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Number of Records Aggregated

Million
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Extension Mode → Few RPCs, Less Data movement → Better Throughput



Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary
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Flow Director

Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work
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ServerServer

Tenants

NICNIC

One Rx queue per core



Flow Director

Splinter: Tenant Locality And Work Stealing
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ServerServer

Tenants

NIC Rx Queue

NICNIC

One Rx queue per core



Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work
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ServerServer

Tenants

Maintain “Locality”
route tenant to queue

NICNICFlow Director

NIC Rx Queue



Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work
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ServerServer

Tenants

NICNIC

Few active tenants
Many idle tenants

Hotspot



Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work
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ServerServer

Tenants

Cores steal from
neighboring queue

NICNIC



What are the benefits of tenant locality & work stealing?

Setup:

● 1024 tenants

● Invoke small extension that reads one object
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Performance With Tenant Locality & Work Stealing
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Offered load = 4 Mop/s
Approaching saturation

Lower is better

Higher tenant skew → Fewer active tenants

No Tenant Locality → Poor median Latency
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Higher tenant skew → Fewer active tenants

No work stealing → Poor tail Latency under high skew

Offered load = 4 Mop/s
Approaching saturation

Lower is better



Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary
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Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines
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NIC Rx Queue

Worker Thread

Coroutine

Task Queue

Dedicated Dispatch task
to construct coroutines



Splinter: Lightweight Cooperative Scheduling
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Solution: Run extensions in stackless coroutines
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NIC Rx Queue

Coroutine

Task Queue
Worker Thread
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NIC Rx Queue

Coroutine

Task Queue

Dedicated Dispatch task
to construct coroutinesWorker Thread
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NIC Rx Queue

Coroutine

Task Queue

Dedicated Dispatch task
to construct coroutines

Task switch cost ~10ns

Worker Thread



Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines
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NIC Rx Queue

Coroutine

Task Queue

Task switch cost ~10ns

Run extension
until it returnsWorker Thread



Task switch cost ~10ns

Splinter: Lightweight Cooperative Scheduling

Problem: Long running tasks starve shorter tasks, hurt latency

Solution: Extensions are cooperative, must yield frequently
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Running Task
Preemption is too

expensive!

aggregate() → u64 {
    ……
    
    yield;

    …...
}

Task Queue



Splinter: Lightweight Cooperative Scheduling

Problem: Long running tasks starve shorter tasks, hurt latency

Solution: Extensions are cooperative, must yield frequently
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Running Task

aggregate() → u64 {
    ……
    
    yield;

    …...
}

Compiler generates code
to save & restore state

Task Queue



What are the benefits of cooperative scheduling?

Setup:

● 1024 tenants

● 85% requests invoke small extension that reads one object

● 15% requests invoke extension that reads 128 objects
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Performance With And Without Yields
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Offered load = 1 Mop/s

15% long running
Approaching saturation

Lower is better

Yield frequently → Better Qos, Less interference



Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core
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Running Task

Task Queue

aggregate() → u64 {
    ……
    
    loop {};

    …...
}



aggregate() → u64 {
    ……
    
    loop {};

    …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core
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Uncooperative Task

Task Queue

Watchdog Poor Qos



aggregate() → u64 {
    ……
    
    loop {};

    …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core
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Watchdog

Migrate worker thread



aggregate() → u64 {
    ……
    
    loop {};

    …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core
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Watchdog Delete Rx queue

Spawn new worker thread
Extension cannot
send/recv packets



aggregate() → u64 {
    ……
    
    loop {};

    …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core
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Watchdog

Steal enqueued tasks

Kill worker thread 
when task yields

Poor Qos



What are the benefits of the watchdog?

Setup:

● 1024 tenants

● Invoke small extension that reads one object
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Performance With Misbehavior
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Performance With Misbehavior
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Performance With Misbehavior
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Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary
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Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime
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aggregate() → u64 {
    ……
    
    …...

    …...
}

 Request Buffer 

 Response Buffer 

               Refs

Send references
to extension
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 Request Buffer 

 Response Buffer 

aggregate() → u64 {
    ……
    
    …...

    …...
}

               Refs

Send references
to extension



Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime
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 Request Buffer 

 Response Buffer 

aggregate() → u64 {
    ……
    
    …...

    …...
}

               Refs

Statically ensure
RPC buffers

outlast lifetime

Lifetime

Statically ensure
record stays

stable across yields



Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime
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 Record

aggregate() → u64 {
    ……
    
    yield;

    …...
}

               Ref

Statically ensure
record stays

stable across yields

Lifetime

Refer to paper



Pushing Facebook’s TAO To Splinter
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Related Work
● Language isolation for kernels – SPIN, Singularity

● Low runtime overheads, zero-copy interface

● Using Rust for memory safety – NetBricks, Tock

● Small set of static functions; does not target massive tenant densities

● Software fault isolation

● Requires data copies, page table manipulation

● Pushing extensions/compute to storage – Malacology, Redis etc

● Extensions are usually trusted, SQL not very good for ADTs
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Conclusion
● Kernel-bypass key-value stores offer < 10μs latency, > Mops/s throughput

• Fast because they’re just dumb?

● Problem: Leverage performance →  share between tenants
● Problem: Apps require rich data models. Ex: Facebook’s TAO

● Implement using gets & puts? → Data movement, client stalls

● Push code to key-value store? → Isolation costs limit density

● Splinter: Multi-tenant key-value store that code can be pushed to

● Tenants push type- & memory-safe code written in Rust at runtime

● > 1000 tenants/server, 3.5 Million ops/s, 9μs median latency
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