
Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage

Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert Ricci, and Ryan Stutsman

University of Utah

Introduction
● Kernel-bypass key-value stores offer < 10μs latency, > Mops/s throughput

• Fast because they’re just dumb?

● Problem: Leverage performance → share between tenants
● Problem: Apps require rich data models. Ex: Facebook’s TAO

● Implement using gets & puts? → Data movement, client stalls

● Push code to key-value store? → Isolation costs limit density

● Splinter: Multi-tenant key-value store that code can be pushed to

● Tenants push type- & memory-safe code written in Rust at runtime

● > 1000 tenants/server, 3.5 Million ops/s, 9μs median latency

2

Richer Data Models Come At A Price

3

Apps require rich data models in addition to performance

● Ex: Social graphs, Decision trees etc.

Key-value stores trade-off data model for performance

● Simple get()’s & put()’s over key-value pairs

Key-value store

get_friends(user)

Client

get()/put()

Hash Table Records

Thinner data model → Better performance
But do applications benefit?

Richer Data Models Come At A Price

4

Apps require rich data models in addition to performance

● Ex: Social graphs, Decision trees etc.

Key-value stores trade-off data model for performance

● Simple get()’s & put()’s over key-value pairs

Key-value store

get_friends(user)

Client

get()/put()

Hash Table Records

Thinner data model → Better performance
But do applications benefit?

Extra Round-Trips (RTTs) Hurt Latency & Utilization

5

Example: Traverse tree with N nodes using gets

● One get() at each level of the tree → O(log N) RTTs

● Control flow depends on data → Client stalls during get()

Key-value store

Client

get()/put()

Hash Table Records

Network RTTs, dispatch are the main bottleneck ~10μs

● 1.5μs inside the server

So push code to storage?

Extra Round-Trips (RTTs) Hurt Latency & Utilization

6

Example: Traverse tree with N nodes using gets

● One get() at each level of the tree → O(log N) RTTs

● Control flow depends on data → Client stalls during get()

Key-value store

Client

get()/put()

Hash Table Records

Network RTTs, dispatch are the main bottleneck ~10μs

● 1.5μs inside the server

So push code to storage?

Why Not Push Compute To Storage?

7

ISOLATION?

Key-value store

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn get_friends() {
 ….
 ….
 ….
 }

 fn classify() {
 ….
 ….
 ….
 }

Context Switches ~1.5µs
Multi-tenancy → Need hardware isolation

RPC Processing Time ~1.5µs
Only native code will do

What Do We Want From The Storage Layer?

● Extremely high tenant density

• Fine-grained resource allocation; 100s of CPU cycles, Kilobytes of memory

• Allow tenants to extend data model at runtime

• Low overhead isolation between tenants & storage layer

8

Granularity of compute is steadily decreasing

Virtual machines → Containers → Lambdas

Splinter: A Multi-Tenant Key-Value Store

● Tenants can install and invoke extensions at runtime

• Extensions written in Rust

• Rely on type and memory safety for isolation, avoids context switch

• Implemented in ~9000 lines of Rust

• Supports two RPCs → install(ext_name) & invoke(ext_name)

• Also supports regular get() & put() RPCs → “Native” operations

9

rustc rustcrustc

1000 Foot View Of Splinter

10

SplinterSplinter

Tenants

Tenant Hash Tables

1000 Foot View Of Splinter

11

SplinterSplinter

Tenants

Tenant Hash Tables

Tenants push extensions
written in Rust

rustc rustcrustc

Splinter compiles,
loads extensions

Into address-space

rustc rustcrustc

1000 Foot View Of Splinter

12

SplinterSplinter

Tenants

Tenant Hash Tables

Rust provides
memory-safety

Extensions do not
share state

Rust provides
memory-safety

Extensions do not
share state

Trust Boundary

rustc rustcrustc

1000 Foot View Of Splinter

13

SplinterSplinter

Tenants

Tenant Hash Tables

Trust Boundary

Extensions receive
references to records

Each tenant sees
a custom key-value store

invoke(“aggregate”, K) sum: 64 bits

Simple Aggregation With Splinter

14

V1[0] + V2[0] + V3[0]

Client

1024 Tenants
100 GB Data

Splinter Server

Native mode

14

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

Extension mode

get(K) K1 K2 K3K1 K2 K3

invoke(“aggregate”, K) sum: 64 bitsK1 K2 K3

Simple Aggregation With Splinter

15

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

get(K) K1 K2 K3

Native mode

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

Extension mode

invoke(“aggregate”, K) sum: 64 bits

Simple Aggregation With Splinter

16

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

multiget()K1 K2 K3 V1 V2 V3

Native mode

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

Extension mode

Simple Aggregation With Splinter

17

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

Native mode

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

Extension mode

multiget() V1 V2 V3K1 K2 K3 invoke(“aggregate”, K) sum: 64 bits

Simple Aggregation With Splinter

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

18

1024 Tenants
100 GB Data

Splinter Server

V1[0] + V2[0] + V3[0]

Client

invoke(“aggregate”, K)

Native mode Extension mode

sum: 64 bits

Simple Aggregation With Splinter

19

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Native
Extension

Number of Records Aggregated

Million
Aggregations/s

Extension Mode → Few RPCs, Less Data movement → Better Throughput

Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary

20

Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary

21

Flow Director

Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work

22

ServerServer

Tenants

NICNIC

One Rx queue per core

Flow Director

Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work

23

ServerServer

Tenants

NIC Rx Queue

NICNIC

One Rx queue per core

Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work

24

ServerServer

Tenants

Maintain “Locality”
route tenant to queue

NICNICFlow Director

NIC Rx Queue

Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work

25

ServerServer

Tenants

NICNIC

Few active tenants
Many idle tenants

Hotspot

Splinter: Tenant Locality And Work Stealing

Problem: Quickly dispatch requests to cores, avoid hotspots

Solution: NIC routes tenants to cores, cores steal work

26

ServerServer

Tenants

Cores steal from
neighboring queue

NICNIC

What are the benefits of tenant locality & work stealing?

Setup:

● 1024 tenants

● Invoke small extension that reads one object

27

Performance With Tenant Locality & Work Stealing

0.1 0.5 0.9 0.99
0

5

10

15

20

25

30

35

Splinter
No Work Stealing
No Locality

Tenant Skew

Median Latency (μs)

28

Offered load = 4 Mop/s
Approaching saturation

Lower is better

Higher tenant skew → Fewer active tenants

No Tenant Locality → Poor median Latency

Performance With Tenant Locality & Work Stealing

0.1 0.5 0.9 0.99
0

50

100

150

200

250

300

350

400

450

Splinter
No Work Stealing
No Locality

Tenant Skew

99th Latency (μs)

29

Higher tenant skew → Fewer active tenants

No work stealing → Poor tail Latency under high skew

Offered load = 4 Mop/s
Approaching saturation

Lower is better

Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary

30

Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines

31

NIC Rx Queue

Worker Thread

Coroutine

Task Queue

Dedicated Dispatch task
to construct coroutines

Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines

32

NIC Rx Queue

Coroutine

Task Queue
Worker Thread

Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines

33

NIC Rx Queue

Coroutine

Task Queue

Dedicated Dispatch task
to construct coroutinesWorker Thread

Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines

34

NIC Rx Queue

Coroutine

Task Queue

Dedicated Dispatch task
to construct coroutines

Task switch cost ~10ns

Worker Thread

Splinter: Lightweight Cooperative Scheduling

Problem: Minimize trust boundary crossing cost

Solution: Run extensions in stackless coroutines

35

NIC Rx Queue

Coroutine

Task Queue

Task switch cost ~10ns

Run extension
until it returnsWorker Thread

Task switch cost ~10ns

Splinter: Lightweight Cooperative Scheduling

Problem: Long running tasks starve shorter tasks, hurt latency

Solution: Extensions are cooperative, must yield frequently

36

Running Task
Preemption is too

expensive!

aggregate() → u64 {
 ……

 yield;

 …...
}

Task Queue

Splinter: Lightweight Cooperative Scheduling

Problem: Long running tasks starve shorter tasks, hurt latency

Solution: Extensions are cooperative, must yield frequently

37

Running Task

aggregate() → u64 {
 ……

 yield;

 …...
}

Compiler generates code
to save & restore state

Task Queue

What are the benefits of cooperative scheduling?

Setup:

● 1024 tenants

● 85% requests invoke small extension that reads one object

● 15% requests invoke extension that reads 128 objects

38

Performance With And Without Yields

Yields No Yields
0

5

10

15

20

25

30

35

40

45

Median Latency (μs)

39

Offered load = 1 Mop/s

15% long running
Approaching saturation

Lower is better

Yield frequently → Better Qos, Less interference

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core

40

Running Task

Task Queue

aggregate() → u64 {
 ……

 loop {};

 …...
}

aggregate() → u64 {
 ……

 loop {};

 …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core

41

Uncooperative Task

Task Queue

Watchdog Poor Qos

aggregate() → u64 {
 ……

 loop {};

 …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core

42

Watchdog

Migrate worker thread

aggregate() → u64 {
 ……

 loop {};

 …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core

43

Watchdog Delete Rx queue

Spawn new worker thread
Extension cannot
send/recv packets

aggregate() → u64 {
 ……

 loop {};

 …...
}

Splinter: Lightweight Cooperative Scheduling

Problem: Uncooperative extensions

Solution: Trusted watchdog core

44

Watchdog

Steal enqueued tasks

Kill worker thread
when task yields

Poor Qos

What are the benefits of the watchdog?

Setup:

● 1024 tenants

● Invoke small extension that reads one object

45

Performance With Misbehavior

46

0 1e-7 5e-7 1e-6 5e-6 1e-5
0

0.5

1

1.5

2

2.5

3

3.5

Fraction of Misbehaving Extensions

Throughput (Mop/s)

Offered load = 3 Mop/s

Watchdog → Maintain performance during misbehavior

Performance With Misbehavior

47

0 1e-7 5e-7 1e-6 5e-6 1e-5
0

20
40
60
80

100
120
140
160
180
200

Fraction of Misbehaving Extensions

99th Latency (µs)

Offered load = 3 Mop/s

Performance With Misbehavior

48

0 1e-7 5e-7 1e-6 5e-6 1e-5
0

20
40
60
80

100
120
140
160
180
200

Fraction of Misbehaving Extensions

99th Latency (µs)

Offered load = 3 Mop/s

Will need tight admission control

Every 1/3 seconds

Splinter: Design

● Tenant Locality And Work Stealing

• Avoid cross-core coordination while avoiding hotspots

• Lightweight Cooperative Scheduling

• Prevent long running extensions from starving short running ones

• Low cost isolation

• No forced data copies across trust boundary

49

Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime

50

aggregate() → u64 {
 ……

 …...

 …...
}

 Request Buffer

 Response Buffer

 Refs

Send references
to extension

Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime

51

 Request Buffer

 Response Buffer

aggregate() → u64 {
 ……

 …...

 …...
}

 Refs

Send references
to extension

Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime

52

 Request Buffer

 Response Buffer

aggregate() → u64 {
 ……

 …...

 …...
}

 Refs

Statically ensure
RPC buffers

outlast lifetime

Lifetime

Statically ensure
record stays

stable across yields

Splinter: Low Cost Isolation

Problem: No forced data copies across trust boundary

Solution: Ensure buffers outlast reference lifetime

53

 Record

aggregate() → u64 {
 ……

 yield;

 …...
}

 Ref

Statically ensure
record stays

stable across yields

Lifetime

Refer to paper

Pushing Facebook’s TAO To Splinter

54

Native Extension Hybrid
0

0.5

1

1.5

2

2.5

3

3.5

Throughput (Mop/s)

Hybrid → get() for point ops, extension for dependencies

Best of both worlds!

Related Work
● Language isolation for kernels – SPIN, Singularity

● Low runtime overheads, zero-copy interface

● Using Rust for memory safety – NetBricks, Tock

● Small set of static functions; does not target massive tenant densities

● Software fault isolation

● Requires data copies, page table manipulation

● Pushing extensions/compute to storage – Malacology, Redis etc

● Extensions are usually trusted, SQL not very good for ADTs

55

Conclusion
● Kernel-bypass key-value stores offer < 10μs latency, > Mops/s throughput

• Fast because they’re just dumb?

● Problem: Leverage performance → share between tenants
● Problem: Apps require rich data models. Ex: Facebook’s TAO

● Implement using gets & puts? → Data movement, client stalls

● Push code to key-value store? → Isolation costs limit density

● Splinter: Multi-tenant key-value store that code can be pushed to

● Tenants push type- & memory-safe code written in Rust at runtime

● > 1000 tenants/server, 3.5 Million ops/s, 9μs median latency

56

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

