
David Lazar, Yossi Gilad, Nickolai Zeldovich

Karaoke
Distributed Private Messaging

Immune to Passive Traffic Analysis

�1

Motivation: Report a crime
without getting fired

Journalist

You’re Fired if you talk to
the journalist!

Govt. Employees

Govt. Boss

(Adversary)

!2

Bob

Goal: Metadata-Private
Text Messaging

Text Messaging App

Bob

!3

• Watches the network
• Runs some of the servers

Threat Model: Global Adversary

Bob

!4

Can we prevent him from learning
who Bob is chatting with?

Prior Approaches
Vuvuzela [SOSP 15]

Stadium [SOSP 17]

Pung [OSDI 16]

Dissent [OSDI 14]

Privacy

No Privacy Guarantee Differential Privacy Cryptographic Privacy

!5

Prior Approaches
Vuvuzela [SOSP 15]

Stadium [SOSP 17]

Pung [OSDI 16]

Dissent [OSDI 14]

Privacy

Scalability

Differential Privacy Cryptographic PrivacyNo Privacy Guarantee

!6

Scalability is critical for
security

Whistleblower

Journalist !7

Bob

App must scale to everyone, so it
isn’t suspicious when Bob joins

Whistleblower

Journalist !8

Bob

Contributions

• Karaoke: a distributed metadata-private messaging
system that scales to more users

• Cryptographic privacy against passive attackers.

• Differential privacy against active attackers.

• 8s end-to-end latency with 4M users.

• 5x to 11x faster than prior work.

!9

Insight: treat passive and
active attackers separately

!10

Privacy

Scalability

Karaoke

No Privacy Differential Privacy Cryptographic Privacy

active

attacker

passive

attacker

Global Passive Adversary

• Watches the network
• Runs some of the servers

!11

Observations by Adversary

!12

Inputs Server State
+

Network Links

Outputs

Observations by Adversary

!13

Inputs

Hiding inputs: constant
cover traffic in rounds

!14

Round 1 Round 2

Hiding outputs

!15

Outputs

Hiding outputs with dead
drops [Vuvuzela]

!16

Dead drops

• Dead drop: designated location to
exchange messages.

• Named by pseudorandom ID, so
reveals nothing about the users.

• When two users access the same dead
drop, their messages are exchanged.

• Idle users result in dead drop with one
access.

Dead drops alone are
insufficient

!17

Obvious from outputs if
Alice and Bob are chatting.

Chatting Not Chatting

Alice

Bob

Vuvuzela generates dummy
accesses (noise)

!18

Chatting Not Chatting

Differential privacy: no single round
reveals much, but many rounds of
observation might reveal a pattern.

Karaoke dead drops are
always doubles

!19

Chatting Not Chatting

Message doubling provides
cryptographic privacy

!20

Chatting Not Chatting

Cryptographic privacy: adversary
can’t distinguish whether Alice

and Bob are chatting

Observations by Adversary

!21

Inputs Server State
+

Network links

Outputs

Mixnet Review

!22

1 2 3

Dead drops

Guarantee: if one server is
honest, adversary can not
tell which users accessed

which dead drops

Distributed Mixnet: each server
processes subset of messages

1

2

3

4

5

!23

…

Users pick random paths
through the network

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Hop 1 Hop 2 Hop 3 Hop 4

!24

Servers decrypt and shuffle
incoming messages at each hop

Hop 1 Hop 2 Hop 3 Hop 4

!25

Last hop does the dead
drop exchanges

Hop 1 Hop 2 Hop 3 Hop 4

!26

Dead drops

Challenge: network links between
hops show Alice is talking to Bob!

Hop 1 Hop 2 Hop 3 Hop 4

!27

Karaoke’s message doubling
gives us some hope!

Hop 1 Hop 2 Hop 3 Hop 4

!28

Possible cases for the last hop

!29

Chatting Not Chatting

Goal: make these cases
indistinguishable so the rest of

the links don’t matter.

!30

Tangled Messages

=
OR

Tangling one of Alice’s and one of
Bob’s messages achieves our goal

!31

Tangled Messages

=
OR

Last hop

An honest server tangles
messages

!32

Last hop

Problem: Alice and Bob’s messages
might not intersect at an honest server

!33

1

2

3

4

Last hop

Problem: Alice and Bob’s messages
might not intersect at an honest server

!34

1

2

3

4

…

…
Assume the paths of Alice’s and

Bob’s other messages are
completely compromised.

Karaoke servers generate dummy
messages that can be used for tangling

!35

…

…

noise

1

2

3

4
Bob

Bob’s message is now
tangled with noise

!36

…

…

noise

1

2

3

4
Bob

Similarly, Alice’s message
can tangle with noise

!37

…

…

noise

1

2

3

4

Alice

Is it possible that the noise
messages swapped places?

!38

…

…

1

2

3

4

As a result, Alice’s and Bob’s messages
could also have switched places

!39

…

…

1

2

3

4

Tangling with high
probability

• The “shape” we just saw is a bit complicated, but it
enables Alice and Bob to get tangled with high probability

• Assuming 80% of the servers are honest

• 14 hops results in tangling with high probability

• Servers need to add a small amount of noise messages
per outgoing link

!40

Karaoke Summary

!41

Inputs Server State
+

Network links

Dead drops

Defending against a global
active adversary

• Karaoke provides differential privacy against a global
active adversary

• Karaoke adds additional noise messages to protect
against message drops

• Due to message doubling, active attacks (message drops)
are rare and detectable, so Karaoke needs far less noise
compared to prior work.

• We use bloom filters to ensure malicious servers don’t
discard the noise. (See paper)

!42

Implementation

• 4000 lines of Go code

• Major CPU cost is onion decryption

• Configured to resist 200 active attacks per user (see
paper)

!43

Evaluation

• Does Karaoke support a large number of users with good
end-to-end latency?

• How does Karaoke’s performance compare to prior work?

• Does it scale? (i.e., does Karaoke support more users by
adding more servers?)

!44

Experimental Setup

• 50 to 200 Amazon EC2 instances

• c4.8xlarge (36 cores) instances for comparison to
Vuvuzela and Stadium

• c5.8xlarge instances for all other experiments

• 10 Gbps links

• 100 ms of simulated network latency between instances

!45

Karaoke achieves low
latency for many users

!46

0 s

20 s

40 s

60 s

80 s

100 s

120 s

140 s

160 s

2M 4M 6M 8M 10M 12M 14M 16M

La
te

nc
y

fo
r

us
er

 m
es

sa
ge

s

Number of users

Karaoke

6s 8s 10s
16s

22s
27s

35s
39s

Vuvuzela

10s

37s

55s

Stadium

68s

136s

Karaoke is CPU bound

!47

0 s

20 s

40 s

60 s

80 s

100 s

120 s

140 s

160 s

2M 4M 6M 8M 10M 12M 14M 16M

La
te

nc
y

fo
r

us
er

 m
es

sa
ge

s

Number of users

Karaoke (c5)

6s 6s 7s 8s
16s 18s

27s 28s

Karaoke (c4)

6s 8s 10s
16s

22s
27s

35s
39s

Vuvuzela

10s

37s

55s

Stadium

68s

136s

Karaoke supports more
users by adding servers

!48

0 s
2 s
4 s
6 s
8 s

10 s
12 s

 50 60 80 100 150 200

La
te

nc
y

fo
r

us
er

 m
es

sa
ge

s

Number of servers

25K users/server

Conclusion

• Karaoke: distributed metadata-private messaging system
that scales to more people

• Cryptographic privacy against passive attackers

• Technique: message doubling + message tangling

• 8 seconds end-to-end latency for 4 million users

• 5x-11x faster than Vuvuzela/Stadium

!49

https://vuvuzela.io

!50

