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Immune to Passive Traffic Analysis
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Motivation: Report a crime 
without getting fired

Journalist

You’re Fired if you talk to 
the journalist!

Govt. Employees

Govt. Boss

(Adversary)
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Bob



Goal: Metadata-Private 
Text Messaging

Text Messaging App

Bob
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• Watches the network 
• Runs some of the servers

Threat Model: Global Adversary

Bob
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Can we prevent him from learning 
who Bob is chatting with?



Prior Approaches
Vuvuzela [SOSP 15]

Stadium [SOSP 17]

Pung [OSDI 16]

Dissent [OSDI 14]

Privacy

No Privacy Guarantee Differential Privacy Cryptographic Privacy
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Prior Approaches
Vuvuzela [SOSP 15]

Stadium [SOSP 17]

Pung [OSDI 16]

Dissent [OSDI 14]

Privacy

Scalability

Differential Privacy Cryptographic PrivacyNo Privacy Guarantee
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Scalability is critical for 
security

Whistleblower

Journalist !7

Bob



App must scale to everyone, so it 
isn’t suspicious when Bob joins

Whistleblower

Journalist !8

Bob



Contributions

• Karaoke: a distributed metadata-private messaging 
system that scales to more users


• Cryptographic privacy against passive attackers.


• Differential privacy against active attackers.


• 8s end-to-end latency with 4M users.


• 5x to 11x faster than prior work.
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Insight: treat passive and 
active attackers separately
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Privacy

Scalability

Karaoke

No Privacy Differential Privacy Cryptographic Privacy

active

attacker

passive

attacker



Global Passive Adversary

• Watches the network 
• Runs some of the servers
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Observations by Adversary

!12

Inputs Server State 
+ 

Network Links

Outputs



Observations by Adversary
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Inputs



Hiding inputs: constant 
cover traffic in rounds
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Round 1 Round 2



Hiding outputs
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Outputs



Hiding outputs with dead 
drops [Vuvuzela]
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Dead drops

• Dead drop: designated location to 
exchange messages.


• Named by pseudorandom ID, so 
reveals nothing about the users.


• When two users access the same dead 
drop, their messages are exchanged.


• Idle users result in dead drop with one 
access.



Dead drops alone are 
insufficient
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Obvious from outputs if 
Alice and Bob are chatting.

Chatting Not Chatting 

Alice

Bob



Vuvuzela generates dummy 
accesses (noise)
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Chatting Not Chatting 

Differential privacy: no single round 
reveals much, but many rounds of 
observation might reveal a pattern.



Karaoke dead drops are  
always doubles
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Chatting Not Chatting 



Message doubling provides 
cryptographic privacy
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Chatting Not Chatting 

Cryptographic privacy: adversary 
can’t distinguish whether Alice 

and Bob are chatting



Observations by Adversary
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Inputs Server State 
+ 

Network links

Outputs



Mixnet Review
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1 2 3

Dead drops

Guarantee: if one server is 
honest, adversary can not 
tell which users accessed 

which dead drops



Distributed Mixnet: each server 
processes subset of messages

1

2

3

4

5
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Users pick random paths 
through the network
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Hop 1 Hop 2 Hop 3 Hop 4
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Servers decrypt and shuffle 
incoming messages at each hop

Hop 1 Hop 2 Hop 3 Hop 4
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Last hop does the dead 
drop exchanges

Hop 1 Hop 2 Hop 3 Hop 4
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Dead drops



Challenge: network links between 
hops show Alice is talking to Bob!

Hop 1 Hop 2 Hop 3 Hop 4
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Karaoke’s message doubling 
gives us some hope!

Hop 1 Hop 2 Hop 3 Hop 4
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Possible cases for the last hop
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Chatting Not Chatting 

Goal: make these cases 
indistinguishable so the rest of 

the links don’t matter.



!30

Tangled Messages

=
OR



Tangling one of Alice’s and one of 
Bob’s messages achieves our goal
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Tangled Messages

=
OR

Last hop



An honest server tangles 
messages
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Last hop



Problem: Alice and Bob’s messages 
might not intersect at an honest server

!33

1

2

3

4

Last hop



Problem: Alice and Bob’s messages 
might not intersect at an honest server
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…

…
Assume the paths of Alice’s and 

Bob’s other messages are 
completely compromised.



Karaoke servers generate dummy 
messages that can be used for tangling
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Bob



Bob’s message is now 
tangled with noise
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Similarly, Alice’s message 
can tangle with noise
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Is it possible that the noise 
messages swapped places?
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As a result, Alice’s and Bob’s messages 
could also have switched places
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Tangling with high 
probability

• The “shape” we just saw is a bit complicated, but it 
enables Alice and Bob to get tangled with high probability


• Assuming 80% of the servers are honest


• 14 hops results in tangling with high probability


• Servers need to add a small amount of noise messages 
per outgoing link
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Karaoke Summary
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Defending against a global 
active adversary

• Karaoke provides differential privacy against a global 
active adversary


• Karaoke adds additional noise messages to protect 
against message drops


• Due to message doubling, active attacks (message drops) 
are rare and detectable, so Karaoke needs far less noise 
compared to prior work.


• We use bloom filters to ensure malicious servers don’t 
discard the noise. (See paper)
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Implementation

• 4000 lines of Go code


• Major CPU cost is onion decryption


• Configured to resist 200 active attacks per user (see 
paper)
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Evaluation

• Does Karaoke support a large number of users with good 
end-to-end latency?


• How does Karaoke’s performance compare to prior work?


• Does it scale? (i.e., does Karaoke support more users by 
adding more servers?)
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Experimental Setup

• 50 to 200 Amazon EC2 instances


• c4.8xlarge (36 cores) instances for comparison to 
Vuvuzela and Stadium


• c5.8xlarge instances for all other experiments


• 10 Gbps links


• 100 ms of simulated network latency between instances
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Karaoke achieves low 
latency for many users
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Karaoke is CPU bound
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Karaoke supports more 
users by adding servers

!48

0 s
2 s
4 s
6 s
8 s

10 s
12 s

 50 60  80  100  150  200

La
te

nc
y 

fo
r

us
er

 m
es

sa
ge

s

Number of servers

25K users/server



Conclusion

• Karaoke: distributed metadata-private messaging system 
that scales to more people


• Cryptographic privacy against passive attackers


• Technique: message doubling + message tangling


• 8 seconds end-to-end latency for 4 million users


• 5x-11x faster than Vuvuzela/Stadium
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https://vuvuzela.io
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