
Arachne:
Core Aware Thread Management

Henry Qin, Qian Li, Jacqueline Speiser,
Peter Kraft, John Ousterhout

Latency Conflicts With Throughput

● Task lifetimes getting shorter in the data center
○ Memcached service time: 10 μs
○ RAMCloud service time: 2 μs

● Low Latency → Poor Core Utilization → Low Throughput

2

Today: Applications lack visibility and
control over cores

Arachne: Core Aware Thread Management

3

App1

Kernel

Core

Thread-Based API

Thread

App2

Today: Applications lack visibility and
control over cores

Arachne: Core Aware Thread Management

4

App1

Kernel

Core

Kernel
Core-Based APIThread-Based API

Arachne: Core Awareness for Applications

Thread

App2
App1 App2

Today: Applications lack visibility and
control over cores

Arachne: Core Aware Thread Management

5

● Better combination of latency and throughput
○ Memcached: 4 – 43x reduction in tail latency

 37% higher throughput at 100 μs latency
○ RAMCloud: 2.5x higher throughput

● Efficient threads implementation: 100 - 300 ns thread primitives

App1

Kernel

Core

Kernel
Core-Based APIThread-Based API

Arachne: Core Awareness for Applications

Thread

App2
App1 App2

Problem: Kernel Threads Inefficient

6

One kernel thread per request? Too Slow!

Kernel Threads

Incoming
Requests

The Solution of Today’s Applications

7

Multiplex requests across long-lived kernel threads.

Kernel Threads

Incoming
Requests

Problem: Matching Parallelism to Resources

8

Multiplex requests across long-lived kernel threads.

Kernel Threads

Incoming
Requests

How many threads?

Problem: Matching Parallelism to Resources

9

Kernel Threads

Too Few Threads

Cores

Too Many Threads

Kernel MultiplexingWasted Core

Goal: # of threads = # of cores, but don’t know # of allocated cores

Incoming
Requests

How many threads?

Multiplex requests across long-lived kernel threads.

Problem: Must Choose Waste or Interference

10

Owning entire machine is wasteful.

Kernel Threads

Cores

Sharing causes competition for cores.

Incoming
Requests

Multiple Tenants

Kernel Multiplexing

Arachne: Core-Aware Thread Management

● Give applications more knowledge/control over cores
○ Application requests cores, not threads
○ Application knows the exact cores it owns
○ Application has exclusive use of cores → eliminates interference

● Move thread management to userspace
○ Multiplex threads on allocated cores
○ Very fast threading primitives (100 - 300 ns)

11

System Overview

12

Core Arbiter

Application

Arachne
Runtime

Core
Policy 1

Application

Arachne
Runtime

Core
Policy 2

● Allocates cores

System Overview

13

Core Arbiter

Application

Arachne
Runtime

Core
Policy 1

Application

Arachne
Runtime

Core
Policy 2

● Allocates cores

● Thread primitives
● Core scaling

System Overview

14

Core Arbiter

Application

Arachne
Runtime

Core
Policy 1

Application

Arachne
Runtime

Core
Policy 2

● Allocates cores

● Thread primitives
● Core scaling

● Thread placement
● Core estimation

Core Allocation

15

One Kernel Thread Per Managed Core

16

Arachne App 1 Arachne App 2
Traditional
Applications

Managed Cores Unmanaged Cores

Leverage Linux cpusets

17

Cpusets

Managed Cores Unmanaged Cores

Arachne App 1 Arachne App 2
Traditional
Applications

Granting a Core

18

Arachne App 1 Arachne App 2
Traditional
Applications

Managed Cores Unmanaged Cores

Cpusets

Granting a Core

19

Arachne App 1 Arachne App 2
Traditional
Applications

Managed Cores Unmanaged Cores

Cpusets

Life of an Arachne Application

20

Application Startup

21

Want 2 Cores

Core Arbiter

Application

Core Policy Arachne Runtime

Application Startup

22

Core Arbiter

Application

Core Policy Arachne Runtime

Multiplex User Threads

23

Core Arbiter

Application

Core Policy Arachne Runtime

Core Estimation

24

Core Arbiter

Application

Core Policy

Want 3 Cores

Statistics
● Utilization
● Runnable Threads

Core Grant

25

Core Arbiter

Application

Core Policy

Core Grant

26

Core Arbiter

Application

Core Policy

Core Preemption

27

Core Arbiter

Application

Core Policy

Please return this core.

User Thread Migration

28

Core Arbiter

Application

Core Policy

Core Preemption Respected

29

Core Arbiter

Application

Core Policy

Returning this core.

Arachne Runtime:
Cache-Optimized

30

Cache-Optimized Design

● Threading performance dominated by cache operations
○ Basic operations not compute heavy

■ Context switch: only 14 instructions
○ Cost comes from cache coherency operations

■ Need to move data between caches
■ Cache miss: 100-200 cycles

● Arachne runtime designed around cache as bottleneck
○ Eliminate cache misses where possible
○ Overlap unavoidable cache misses

31

Cache-Optimized Design

● Concurrent misses
○ Read load information from multiple cores in parallel

● No run queues; dispatcher scans context Runnable flags

32

Dispatcher

Stack

Runnable

Function +
Arguments

Thread Context

Stack

Runnable

Function +
Arguments

Thread Context

Stack

Runnable

Function +
Arguments

Thread Context

● Total time to create a new thread, with load balancing: 4 cache misses

Evaluation

33

● Configuration (CloudLab m510)
○ 8-Core (16 HT) Xeon D-1548 @ 2.0 Ghz
○ 64 GB DDR4-2133 @ 2400 Mhz
○ Dual-port Mellanox ConnectX-3 10 Gb
○ HPE Moonshot-45XGc

● Experiments
○ Threading primitives
○ Latency vs Throughput
○ Changing Load and Background Applications

Evaluation

34

What is cost of thread operations?

35

Operation Arachne Go uThreads std::thread

Thread Creation 320 ns 444 ns 6132 ns 13329 ns

Condition Variable Notify 272 ns 483 ns 4976 ns 4962 ns

What is cost of thread operations?

36

Operation Arachne Go uThreads std::thread

Thread Creation 320 ns 444 ns 6132 ns 13329 ns

Condition Variable Notify 272 ns 483 ns 4976 ns 4962 ns

Child on different core, with load balancing Child on same core

Memcached Integration

Worker ThreadsClients
C
C
C
C
C
C
C

37

W

W

W

W

Before: Static Connection Assignment

Fixed pool of threads

Memcached Integration

Worker ThreadsClients
C
C
C
C
C
C
C

38

W

W

W

W

Clients
C
C
C
C
C
C
C

Request Dispatcher

D

Worker Cores

W

W
Thread
Creation

Before: Static Connection Assignment After: One Thread Per Request

Cores vary with loadFixed pool of threads

Memcached: Facebook ETC trace

1288 client connections
SET:GET == 1:30

39

Memcached: Facebook ETC trace

40

40X

 3X

1288 client connections
SET:GET == 1:30

Memcached: Facebook ETC trace

41

20%

1288 client connections
SET:GET == 1:30

Memcached: Facebook ETC trace

42

100 μs SLA

Better throughput
at low latency

Changing Load and Colocation

43

Does Arachne scale well with changing load?

Does Arachne enable high core utilization?
● Background app absorb unused resources
● Background app doesn’t interfere with memcached performance

Changing Load

44

Modified memtier

Poisson arrival rate

30B Keys, 200B values reads

Changing Load

45

Cores scale with load

Nearly constant

median and tail latency

264 - 597 us

Changing Load

46

Tail latency increases

with load
9x higher than Arachne

at load

Colocated with x264 Video Encoder

47

Memcached
latency rises

Arachne latency
unchanged.

Colocated with x264 Video Encoder

48

x264 throughput
drops at high
memcached load

Additional Experiments

49

● Memcached under a skewed workload
● RAMCloud write throughput
● RAMCloud under YCSB workload
● Thread creation scalability
● Comparison with a ready queue
● Arachne runtime without dedicated cores
● Cost of signaling a blocked thread
● Cost of allocating a core

Conclusion

Arachne: core awareness for applications
● Applications request cores, not threads
● Application knows the exact cores it owns

Benefits
● Better combination of latency and throughput
● Efficient thread implementation

50

Kernel
Core-Based API

App1 App2

Questions?
github.com/PlatformLab/Arachne

github.com/PlatformLab/memcached-A

Poster #27

51

