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Latency Conflicts With Throughput

● Task lifetimes getting shorter in the data center
○ Memcached service time: 10 μs
○ RAMCloud service time: 2 μs

● Low Latency → Poor Core Utilization → Low Throughput
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Today: Applications lack visibility and 
control over cores

Arachne: Core Aware Thread Management
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● Better combination of latency and throughput
○ Memcached:   4 – 43x reduction in tail latency

     37% higher throughput at 100 μs latency
○ RAMCloud:     2.5x higher throughput

● Efficient threads implementation: 100 - 300 ns thread primitives
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Problem: Kernel Threads Inefficient
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One kernel thread per request? Too Slow!

Kernel Threads

Incoming   
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The Solution of Today’s Applications
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Multiplex requests across long-lived kernel threads.

Kernel Threads

Incoming   
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Problem: Matching Parallelism to Resources

8

Multiplex requests across long-lived kernel threads.
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Problem: Matching Parallelism to Resources
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Kernel Threads

Too Few Threads

Cores

Too Many Threads

Kernel MultiplexingWasted Core

Goal: # of threads = # of cores, but don’t know # of allocated cores

Incoming   
Requests

How many threads?

Multiplex requests across long-lived kernel threads.



Problem: Must Choose Waste or Interference

10

Owning entire machine is wasteful.

Kernel Threads

Cores

Sharing causes competition for cores.

Incoming   
Requests

Multiple Tenants

Kernel Multiplexing



Arachne: Core-Aware Thread Management

● Give applications more knowledge/control over cores
○ Application requests cores, not threads
○ Application knows the exact cores it owns
○ Application has exclusive use of cores → eliminates interference

● Move thread management to userspace
○ Multiplex threads on allocated cores
○ Very fast threading primitives (100 - 300 ns)
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System Overview
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● Thread primitives
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● Thread placement
● Core estimation



Core Allocation
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One Kernel Thread Per Managed Core
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Leverage Linux cpusets
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Granting a Core
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Granting a Core
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Life of an Arachne Application
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Application Startup
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Application Startup
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Multiplex User Threads
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Core Estimation
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● Utilization
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Core Grant
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Core Preemption
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User Thread Migration
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Core Preemption Respected
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Arachne Runtime: 
Cache-Optimized
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Cache-Optimized Design

● Threading performance dominated by cache operations
○ Basic operations not compute heavy

■ Context switch: only 14 instructions
○ Cost comes from cache coherency operations

■ Need to move data between caches
■ Cache miss: 100-200 cycles

● Arachne runtime designed around cache as bottleneck
○ Eliminate cache misses where possible
○ Overlap unavoidable cache misses
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Cache-Optimized Design

● Concurrent misses
○ Read load information from multiple cores in parallel

● No run queues; dispatcher scans context Runnable flags
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● Total time to create a new thread, with load balancing: 4 cache misses



Evaluation
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● Configuration (CloudLab m510)
○ 8-Core (16 HT) Xeon D-1548 @ 2.0 Ghz
○ 64 GB DDR4-2133 @ 2400 Mhz
○ Dual-port Mellanox ConnectX-3 10 Gb
○ HPE Moonshot-45XGc

● Experiments
○ Threading primitives
○ Latency vs Throughput
○ Changing Load and Background Applications

Evaluation
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What is cost of thread operations?
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Operation Arachne Go uThreads std::thread

Thread Creation 320 ns 444 ns 6132 ns 13329 ns

Condition Variable Notify  272 ns 483 ns 4976 ns 4962 ns



What is cost of thread operations?
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Operation Arachne Go uThreads std::thread

Thread Creation 320 ns 444 ns 6132 ns 13329 ns

Condition Variable Notify  272 ns 483 ns 4976 ns 4962 ns

Child on different core, with load balancing Child on same core



Memcached Integration
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Memcached: Facebook ETC trace

1288 client connections
SET:GET == 1:30
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Memcached: Facebook ETC trace
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1288 client connections
SET:GET == 1:30



Memcached: Facebook ETC trace
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20%

1288 client connections
SET:GET == 1:30



Memcached: Facebook ETC trace
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100 μs SLA

Better throughput 
at low latency



Changing Load and Colocation
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Does Arachne scale well with changing load?

Does Arachne enable high core utilization?
● Background app absorb unused resources
● Background app doesn’t interfere with memcached performance



Changing Load
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Modified memtier 

Poisson arrival rate

30B Keys, 200B values reads 



Changing Load
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Cores scale with load

Nearly constant 

median and tail latency

264 - 597 us



Changing Load
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Tail latency increases 

with load
9x higher than Arachne 

at load



Colocated with x264 Video Encoder
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Memcached 
latency rises

Arachne latency
unchanged.



Colocated with x264 Video Encoder
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x264 throughput 
drops at high 
memcached load



Additional Experiments
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● Memcached under a skewed workload
● RAMCloud write throughput
● RAMCloud under YCSB workload
● Thread creation scalability
● Comparison with a ready queue
● Arachne runtime without dedicated cores
● Cost of signaling a blocked thread 
● Cost of allocating a core



Conclusion

Arachne: core awareness for applications
● Applications request cores, not threads
● Application knows the exact cores it owns

Benefits
● Better combination of latency and throughput
● Efficient thread implementation
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Questions?
github.com/PlatformLab/Arachne

github.com/PlatformLab/memcached-A

Poster #27
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