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Trends in Cloud Computing

Accelerators play pivotal role in cloud

• CPUs running out of steam due to End of Moore’s Law

• GPUs, FPGAs, custom silicon deliver 10-100x higher performance

Cloud privacy important but challenging

• Customers operate on sensitive data (e.g., patients, transactions)

• Increasing frequency and sophistication of data breaches

2Need strong security mechanisms for preserving data privacy in cloud



3Undesirable trade-off between performance and security

Confidential Cloud Computing 
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Trusted Execution Environments (TEE)

• Execution isolated from privileged attackers

• Remote attestation for establishing trust

• Examples: Intel SGX, ARM TrustZone

• Supported by major cloud providers (e.g. 
Azure Confidential Computing)

But, CPU TEEs cannot be used in apps 
that utilize accelerators
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Our Proposal: Graviton

Graviton: Trusted Execution Environments on GPUs

• Execution isolated from system software and other co-tenants

• Remote attestation for establishing trust 

Contributions

• Graviton architecture with minimal hardware extensions

• Extensions to CUDA runtime for end-to-end security

• Graviton implementation for demonstrating low performance overheads
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Outline

• Introduction

• GPUs & Threat Model

• Graviton

• Evaluation

• Conclusion
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GPU 101: System Stack
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GPU 101: Execution Model
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Context

GPU 101: Cat Classifier Example
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GPU 101: Tampering with Commands & Data
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GPU 101: Violating Context Isolation

Context 1 Context 2
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Threat Model

Trusted computing base

• GPU package including on-package memory

• CPU package including TEE implementation

• GPU runtime hosted in CPU TEE

Goal: Confidentiality and integrity of computation and data

Out of scope: side channels and package assembly attacks
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Outline

• Introduction

• GPUs & Threat Model

• Graviton

• Evaluation

• Conclusion
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Graviton: Overview
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Hardware primitives in GPU

• Remote attestation for establishing trust 

• Context isolation

• Secure command submission

Runtime abstractions

• Secure memory management

• Secure memory copy and task launch
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Key concept: Redefined interface between hardware and software 



MMIO

Graviton: Context Isolation
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Protected Memory
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Graviton: Secure Memory Copy
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Key concept

• Data/code plaintext only inside TEEs

• Data/code ciphertext outside TEE (DMA buffer)

Protocol

Untrusted Memory
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Command 

Processor

Runtime

co
m

m
a
n
d

s

Driver

Graviton: Secure Memory Copy
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Key concept

• Data/code plaintext only inside TEEs

• Data/code ciphertext outside TEE (DMA buffer)

Protocol

• Secure submission of copy task

Untrusted Memory
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Key concept

• Data/code plaintext only inside TEEs

• Data/code ciphertext outside TEE (DMA buffer)

Protocol

• Secure submission of copy task

• Secure submission for authenticated decryption

Untrusted Memory



Graviton in a Nutshell
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• Changes limited to peripheral components

• No changes to CPU, GPU cores and memory

Transparent to developers

• GPU runtime abstractions

• Hidden behind GPU programming model



Implementation

NVIDIA GTX Titan Black

• 2880 CUDA cores, 6GB of memory, peak performance 5.6 TFLOPS

Prototype

• GPU runtime: secure task submission and secure memory management

• Device driver: address-space mgmt. command submission

• Hardware primitives: emulation of new commands and crypto in device driver

Benchmarks: Cifar10-CNN and MNIST-autoencoder

19



Implications on System Performance

20

0%

25%

50%

75%

100%

125%

150%

Cifar10 MNIST BlackScholes

E
n
d

-t
o

-E
n
d

 R
u
n
ti
m

e

(N
o

rm
a
liz

e
d

 t
o

 I
n
se

cu
re

)

Baseline Isolation Secure Copy

Overhead correlates with ratio between computation and I/O

Insecure

Isolation

• Secure context management

• Secure command submission

Secure copy

• Host-side authenticated encryption

• GPU-side authenticated encryption



Concluding Remarks

Cloud trends in collision

• Confidentiality and hardware acceleration

• But, confidential computing restricted to CPUs

Graviton: Trusted Execution Environments on GPUs

• Low hardware complexity

• Low performance overheads

• Hardware complexity hidden by GPU programming model

21


