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Scheduling: A Fundamental Primitive

• Modern storage systems are shared

• Correct and efficient request scheduling is indispensable
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• Popular storage systems have fundamental scheduling deficiencies

Broken Scheduling in Current Systems

[MongoDB - #21858]: 

“A high throughput update workload … could cause starvation on secondary reads”

[HBase - #8884]: 
“ …when the read load is high on a specific RS is high, the write throughput also get impacted 

dramatically, and even write data loss...”

[Cassandra - #10989]: 
“inability to balance writes/reads/compaction/flushing…” 

etc.

3



…

Why Is Scheduling Broken?
• The complexities in modern storage systems

- Distributed: >1000 servers
- Highly concurrent: ~1000 interacting threads in each server
- Long execution path: requests traverses numerous threads across multiple machines 

We introduce Thread Architecture Model to describe 
scheduling complexities
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Thread Architecture Model (TAM)
• Encodes scheduling related info:

• Request flows
• Thread interactions
• Resource consumption patterns

• Easy to obtain automatically 

• From complicated systems to an 
understandable and analyzable model
• HBase
• Cassandra
• MongoDB
• Riak
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TAM Exposes Scheduling Problems

• We discovered five categories of problems that happen in real systems

- Lack of scheduling points

- Unknown resource usage

- Hidden contention between threads

- Uncontrolled thread blocking

- Ordering constraints upon requests 
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Fix Problems Leads to Effective Scheduling
• TAM-based simulation finds problem-free thread architectures 

• Provides schedulability: various desired scheduling policies can be realized

• HBase  Tamed-HBase

• Implementation transforms system to be schedulable
• Muzzled-HBase: approximated implementation

• Effective scheduling under YCSB and other workloads  
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Thread Architecture Model
enables

principled schedulability analysis 
on general distributed storage systems
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Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion
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Thread Architecture Model
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Thread Architecture Model
• TAM encodes scheduling related info:

• Request flows
• Thread interactions
• Resource consumption patterns

• From complex systems to analyzable models

• TADalyzer: from live system to TAM automatically
• Only 20-50 lines of user annotation code required
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Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion
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TAM Exposes Scheduling Problems
• No scheduling
• Unknown resource usage 
• Hidden contention
• Blocking
• Ordering constraint 

• Common in distributed storage systems
• HBase, Cassandra, MongoDB,  Riak…

• Directly identifiable from TAM
• No low-level implementation details required

Req Handle 
&

Req Handle 
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Scheduling Problem: 
Unknown Resource Usage
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Scheduling Problem: 
Unknown Resource Usage

Workload: 
C1: issues cold requests 
C2: issues cold and cached requests

Expectation: 
C2 has much higher throughput (due to cached request)

CPU underutilized
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Unknown Resource Usage: Solution
Workload: 

C1: issues cold requests 
C2: issues cold and cached requests

Expectation: 
C2 has much higher throughput (due to cached request)

18



Scheduling Problem: 
Unknown Resource Usage

• Resource usage patterns unknown to schedulers until after the processing 
begins

• Forces schedulers to make decisions before information is available

• Identified as red square brackets around resource symbols in TAM

Req Handle 
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Scheduling Problem: Blocking
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Scheduling Problem: Blocking

MongoDB

Workload: 
C1: reads from primary (does not go to secondary)
C2: writes to primary (replicate to secondary node) 
time 10: the secondary node slows down

Expectation: 
C1 reads throughput remains stable

Time (s)
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Blocking: Solution
Workload: 

C1: reads
C2: writes (replicate to secondary node) 
time 10: the secondary node slows down

Expectation: 
C1 reads throughput remains stable

MongoDB



Scheduling Problem: Blocking
• Stages with fixed number of threads block on other stages 

• Unable to schedule requests that could have been completed because all 
threads block

• Identified as dashed arrow point to stages with queues in TAM 
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Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion
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Fixing Problems Leads to Schedulability 

• TAM-based simulation framework: explore thread architectures 
• Simulates how systems perform under workloads 

• Easily study architecture designs and scheduling policies

• Implementation: realize schedulable systems 
• Also validates that simulation matches the real world
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Simulation: HBase to Tamed-HBase
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Implementation : 
Tamed-HBase to Muzzled-HBase

• Some approximations to make implementation easier

• Supports multiple scheduling policies 

• Proper scheduling under various workloads
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Muzzled-HBase: Weighted Fairness

28

Workloads: 
Five clients, each with different weight , run YCSB (reads mostly)

Expectation: 
Client receives throughput proportional to weight



Muzzled-HBase: Weighted Fairness
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Muzzled-HBase: 
Tail Latency Guarantee
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Workloads: 
Foreground client: runs YCSB (update-heavy)
Background client: random Gets or Puts

Expectation: 
Foreground latency remains stable
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Muzzled-HBase: 
Tail Latency Guarantee
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Conclusion
• We introduce thread architecture models

• Reduce complex distributed scheduling to an understandable representation

• Enable schedulability analysis 

• We discover five scheduling problems
• Point to problematic architecture that exist in real systems

• Fixing them enables effective scheduling

• Complex systems need to be built with the help of TAM
• Analyze existing system and enable schedulability

• Design systems that are problem-free and natively schedulable
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Thank you! Questions?
(poster number: 28)

OceanBase: We are Hiring
Geo-scale relational database behind Alipay

42,000,000 SQLs per second
US and China based
Contact OceanBase-Public@list.alibaba-inc.com

OceanBase微信
公众号35
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