
Principled Schedulability Analysis
for Distributed Storage Systems

Using Thread Architecture Models
Suli Yang*, Jing Liu,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

* work done while at UW-Madison

Scheduling: A Fundamental Primitive

• Modern storage systems are shared

• Correct and efficient request scheduling is indispensable

N
S

snapchat

A

R/W R/W R/W
R/W

E

Shared Storage

A
A

A

S N E

2

• Popular storage systems have fundamental scheduling deficiencies

Broken Scheduling in Current Systems

[MongoDB - #21858]:

“A high throughput update workload … could cause starvation on secondary reads”

[HBase - #8884]:
“ …when the read load is high on a specific RS is high, the write throughput also get impacted

dramatically, and even write data loss...”

[Cassandra - #10989]:
“inability to balance writes/reads/compaction/flushing…”

etc.

3

…

Why Is Scheduling Broken?
• The complexities in modern storage systems

- Distributed: >1000 servers
- Highly concurrent: ~1000 interacting threads in each server
- Long execution path: requests traverses numerous threads across multiple machines

We introduce Thread Architecture Model to describe
scheduling complexities

4

Thread Architecture Model (TAM)
• Encodes scheduling related info:

• Request flows
• Thread interactions
• Resource consumption patterns

• Easy to obtain automatically

• From complicated systems to an
understandable and analyzable model
• HBase
• Cassandra
• MongoDB
• Riak

Packet Ack
! "#

Data Xceive

Ack Process

! "
Data Stream

Data Xceive
! "#

r1

r2

f1

a3

Packet Ack
w6

w7

w3

w7

w2

w4

a1

w4

w5

w1

w5

w3

r1
r2

w5

w2

w3

a2

LOG Sync

Mem Flush
!

RPC Respond
! "

RPC Read
! "

LOG Append

21

RPC Handle
! $"%$#%

RegionServer/DataNode

RegionServer/DataNode
5

TAM Exposes Scheduling Problems

• We discovered five categories of problems that happen in real systems

- Lack of scheduling points

- Unknown resource usage

- Hidden contention between threads

- Uncontrolled thread blocking

- Ordering constraints upon requests

6

Fix Problems Leads to Effective Scheduling
• TAM-based simulation finds problem-free thread architectures

• Provides schedulability: various desired scheduling policies can be realized

• HBase Tamed-HBase

• Implementation transforms system to be schedulable
• Muzzled-HBase: approximated implementation

• Effective scheduling under YCSB and other workloads

7

Thread Architecture Model
enables

principled schedulability analysis
on general distributed storage systems

8

Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion

9

Thread Architecture Model

Packet Ack
! "#

Data Xceive

Ack Process

! "
Data Stream

Data Xceive
! "#

r1

r2

f1

a3

Packet Ack
w6

w7

w3

w7

w2

w4

a1

w4

w5

w1

w5

w3

r1
r2

w5

w2

w3

a2

LOG Sync

Mem Flush
!

RPC Respond
! "

RPC Read
! "

LOG Append

21

RPC Handle
! $"%$#%

RegionServer/DataNode

RegionServer/DataNode
Packet AckData Xceive

Ack Process

Data Stream

Data Xceive

r1

r2

f1

a3

Packet Ack
w6

w7

w3

w7

w2

w4

a1

w4

w5

w1

w5

w3

r1
r2

w5

w2

w3

a2

LOG Sync

Mem Flush

RPC RespondRPC Read

LOG Append

21

RPC Handle

RegionServer/DataNode

RegionServer/DataNode

Packet AckData Xceive

Ack Process

Data Stream

Data Xceive

r1

r2

f1

a3

Packet Ack
w6

w7

w3

w7

w2

w4

a1

w4

w5

w1

w5

w3

r1
r2

w5

w2

w3

a2

LOG Sync

Mem Flush

RPC RespondRPC Read

LOG Append

21

RPC Handle

RegionServer/DataNode

RegionServer/DataNode
Packet AckData Xceive

Ack Process

Data Stream

Data Xceive

r1

r2

f1

a3

Packet Ack
w6

w7

w3

w7

w2

w4

a1

w4

w5

w1

w5

w3

r1
r2

w5

w2

w3

a2

LOG Sync

Mem Flush

RPC RespondRPC Read

LOG Append

21

RPC Handle

RegionServer/DataNode

RegionServer/DataNode

Name
C NI L

stage (threads performing similar tasks)
Name

&
,

1
/

CPU
I/O
network
Lock

resource usage

request flow

request queue (scheduling point)

blocking

11

Thread Architecture Model
• TAM encodes scheduling related info:

• Request flows
• Thread interactions
• Resource consumption patterns

• From complex systems to analyzable models

• TADalyzer: from live system to TAM automatically
• Only 20-50 lines of user annotation code required

12

Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion

13

TAM Exposes Scheduling Problems
• No scheduling
• Unknown resource usage
• Hidden contention
• Blocking
• Ordering constraint

• Common in distributed storage systems
• HBase, Cassandra, MongoDB, Riak…

• Directly identifiable from TAM
• No low-level implementation details required

Req Handle
&

Req Handle

14

TAM Exposes Scheduling Problems
• No scheduling
• Unknown resource usage
• Hidden contention
• Blocking
• Ordering constraint

• Common in distributed storage systems
• HBase, Cassandra, MongoDB, Riak…

• Directly identifiable from TAM
• No low-level implementation details required

15

! "
C-ReqHandle

! "
Msg In

! #$%
Read

! #$%
Mutation

! #$%
V-Mutation

!
Respond

! "
C-Respond

! "
Msg Out

...

! "
Msg In

! #$%
Read

! #$%
Mutation

! #$%
V-Mutation

!
Respond

! "
Msg Out

1

...

2

3

3

3

4

4

4

1

5

6

7

l1

l2

6

7

3
3
3

4

4

4

5

l2

8Cassandra Node

Cassandra Node

5

l1

Scheduling Problem:
Unknown Resource Usage

16

Scheduling Problem:
Unknown Resource Usage

Workload:
C1: issues cold requests
C2: issues cold and cached requests

Expectation:
C2 has much higher throughput (due to cached request)

CPU underutilized

17

Unknown Resource Usage: Solution
Workload:

C1: issues cold requests
C2: issues cold and cached requests

Expectation:
C2 has much higher throughput (due to cached request)

18

Scheduling Problem:
Unknown Resource Usage

• Resource usage patterns unknown to schedulers until after the processing
begins

• Forces schedulers to make decisions before information is available

• Identified as red square brackets around resource symbols in TAM

Req Handle

19

Scheduling Problem: Blocking

! "#$% #&%
Worker

"
Feedback

! $ &
Oplog Writer

! $
Writer Batcher

"
NetInterfaceFetcher

! "#$% #&%
Worker1

2

3

4
5

67

8

Primary NodeSecondary Node

8

1

MongoDB

20

Scheduling Problem: Blocking

MongoDB

Workload:
C1: reads from primary (does not go to secondary)
C2: writes to primary (replicate to secondary node)
time 10: the secondary node slows down

Expectation:
C1 reads throughput remains stable

Time (s)

21

Blocking: Solution
Workload:

C1: reads
C2: writes (replicate to secondary node)
time 10: the secondary node slows down

Expectation:
C1 reads throughput remains stable

MongoDB

Scheduling Problem: Blocking
• Stages with fixed number of threads block on other stages

• Unable to schedule requests that could have been completed because all
threads block

• Identified as dashed arrow point to stages with queues in TAM

Req Handle
&

I/O
,

23

Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion

24

Fixing Problems Leads to Schedulability

• TAM-based simulation framework: explore thread architectures
• Simulates how systems perform under workloads

• Easily study architecture designs and scheduling policies

• Implementation: realize schedulable systems
• Also validates that simulation matches the real world

25

Simulation: HBase to Tamed-HBase

Packet AckData Xceive

Ack Process

Data Stream

Data Xceive

r1

r2

f1

a3

Packet Ack
w6

w7

w3

w7

w2

w4

a1

w4

w5

w1

w5

w3

r1
r2

w5

w2

w3

a2

LOG Sync

Mem Flush

RPC RespondRPC Read

LOG Append

21

RPC Handle

RegionServer/DataNode

RegionServer/DataNode

RegionServer/DataNode

Packet Ack

Ack Process Packet Ack

a1

CPU
!

RegionServer/DataNode

IO
"

LOG Sync

Network
! #

Network
! # "

IO

Data Xceive
! #"

RPC Read
! #

RPC Handle
! #$"% []

RPC Respond
! # LOG Append

"

Mem Flush
!

Data Stream
! #

a2

26

Implementation :
Tamed-HBase to Muzzled-HBase

• Some approximations to make implementation easier

• Supports multiple scheduling policies

• Proper scheduling under various workloads

27

Muzzled-HBase: Weighted Fairness

28

Workloads:
Five clients, each with different weight , run YCSB (reads mostly)

Expectation:
Client receives throughput proportional to weight

Muzzled-HBase: Weighted Fairness

29

Workloads:
Five clients, each with different weight , run YCSB (reads mostly)

Expectation:
Client receives throughput proportional to weight

Muzzled-HBase:
Tail Latency Guarantee

30

Workloads:
Foreground client: runs YCSB (update-heavy)
Background client: random Gets or Puts

Expectation:
Foreground latency remains stable

Muzzled-HBase:
Tail Latency Guarantee

31

Workloads:
Foreground client: runs YCSB
Background client: random Gets or Puts

Expectation:
Foreground latency remains stable

Muzzled-HBase:
Tail Latency Guarantee

32

Workloads:
Foreground client: runs YCSB
Background client: random Gets or Puts

Expectation:
Foreground latency remains stable

Outline
• Overview

• Thread Architecture Model

• Scheduling Problems

• Achieve Schedulability: A Case Study

• Conclusion

33

Conclusion
• We introduce thread architecture models

• Reduce complex distributed scheduling to an understandable representation

• Enable schedulability analysis

• We discover five scheduling problems
• Point to problematic architecture that exist in real systems

• Fixing them enables effective scheduling

• Complex systems need to be built with the help of TAM
• Analyze existing system and enable schedulability

• Design systems that are problem-free and natively schedulable

34

Thank you! Questions?
(poster number: 28)

OceanBase: We are Hiring
Geo-scale relational database behind Alipay

42,000,000 SQLs per second
US and China based
Contact OceanBase-Public@list.alibaba-inc.com

OceanBase微信
公众号35

mailto:OceanBase-Public@list.alibaba-inc.com

