
wPerf: Generic Off-CPU Analysis to 
Identify Bottleneck Waiting Events

Fang Zhou, Yifan Gan, Sixiang Ma, Yang Wang
The Ohio State University



Optimizing bottleneck is critical to throughput

• Bottleneck: factors that limit the throughput of application.

•Question: where is the bottleneck?



• Both execution and waiting can create the bottlenecks.

Where is the bottleneck?

PID %CPU %MEM COMMAND

930 20.0% 0.0% test

931 50.0% 0.0% test

Device tps kB_read/s kB_wrtn/s

sda 7.37 0 1778.27

Where is the bottleneck?



On-CPU & Off-CPU analysis

• On-CPU analysis
• What execution events are creating the bottleneck?
• Quite well studied: Recording execution time (perf, oprofile, etc.), Critical Path 

Analysis, Causal Profiler (Coz SOSP’15), etc.

• Off-CPU analysis
• What waiting events are creating the bottleneck?
• Common waiting events: lock contention, condition variable, I/O waiting, etc.
• Lock-based (e.g., SyncPerf EuroSys’17, etc.) solutions are incomplete.
• Length-based (e.g., Off-CPU flamegraph, etc.) solutions are inaccurate.



Key challenge of off-CPU analysis

Local impact vs global impact

• Local impact: impact on threads directly waiting for the event
• Global impact: impact on the whole application
• Large local impact does not mean large global impact



Overview of wPerf

• Goal: identify bottlenecks caused by all kinds of waiting events.
• (Note: how to optimize bottlenecks requires the users’ efforts)

• To compute global impact
• Generate a holistic view (wait-for graph) of the application
• Theorem: knot in a wait-for graph must contain a bottleneck

• Results:
• Up to 4.83x improvement in seven open source applications



Concrete example

Queue is a producer-consumer queue with max size k.
Assume k = 1 for simplicity.
Thread A (enqueue) blocks if queue size is 1.
Thread B (dequeue) blocks if queue size is 0.

while (true)
recv req from network
funA(req) // 2ms
queue.enqueue(req)

Thread A
while (true)

req = queue.dequeue()
funB(req) // 5ms
log req to a file
sync() // 5ms

Thread B



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1

R2

R2

R2

R3

R3

R1

R1

R2

R2

R3

R3

R3

R5

R4

R4

R6

R5

R4R1R1



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R3

R1

R2

R2

R3

R3

R3

R5

R4

R4

R6

R5

R4R1 R2R2

R1R1



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R1

R2

R2

R3

R3

R3

R5

R4

R4

R6

R5

R4R1 R2R2

R1 R2

R1R1

R2

R3



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R2

R2

R3

R3

R3

R5

R4

R4

R6

R5

R4R1 R2R2

R1 R2

R1R1

R2

R3

R1



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R2

R3

R3

R3

R5

R4

R6

R5

R1 R2R2

R1 R2

R1R1

R3

R1

R2

R4R4



R2

Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R3

R3

R3

R5

R4

R4

R6

R5

R4R1 R2R2

R1 R2

R1R1

R3

R1

R2



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R2

R2 R3

R3

R5

R4

R6R4R1 R2R2

R1 R2

R1R1

R3

R1

R3

R4

R5



Concrete example

Queue

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1 R2

R3

R2

R2

R3

R3

R3

R5

R4

R4

R6

R5

R4R1 R2R2

R1 R2

R1R1

R3

R1

R3

R4

R6

R5



Concrete example

Queue

syncing

Thread A

Thread B

Disk

NIC

FunA Waiting EventFunB Sync Queue NIC

Time

Ri

R1

syncing syncing

R2

R3

R2

R2

R3

R3

R3

R5

R4

R4

R6

R5

R4R1 R2R2

R1 R2

R1R1

R3

R1



Observation: waiting is important

Observations:
Waiting can have a large impact on throughput.
Longer waiting events may not be more important.
Contention is not the only waiting event that matters.

Thread A

Thread B

Disk

syncing syncingsyncing

FunA Waiting EventFunB Sync



Observation: waiting is important

Thread A

Thread B

Disk

Observations :
Waiting can have a large impact on throughput.
Longer waiting events may not be more important.
Contention is not the only waiting event that matters.

FunA Waiting EventFunB Sync



Observation: long waiting may not be important

Observations :
Waiting can have a large impact on throughput.
Longer waiting events may not be more important.
• Large local impact does not mean large global impact.
Contention is not the only waiting event that matters.

Thread A

Thread B

Disk

syncing syncingsyncing

FunA Waiting EventFunB Sync



Observation: contention is not everything

Observations:
Waiting can have a large impact on throughput.
Longer waiting events may not be more important.
Contention is not the only waiting event that matters.

Thread A

Thread B

Disk

syncing syncingsyncing

FunA Waiting EventFunB Sync



Key insights of wPerf

• Insight 1: to improve the throughput, we need to improve all the 
threads involved in request processing (worker threads).
• Worker threads: request handling, disk flushing, garbage collection, etc.
• Background threads: heartbeat processing, deadlock checking, etc.
• See formal definition in the paper.

• Implication:
• Bottleneck is an event whose optimization can improve all worker threads



Key insights of wPerf

Insight 1: a bottleneck is an event whose optimization can improve all 
worker threads.

Thread A

Thread B

Disk



Key insights of wPerf

Optimizing sync can double the throughputs of all 
worker threads, so sync is a bottleneck.

Thread A
Thread B
Disk

Thread A
Thread B
Disk

Before optimization:

After optimization:



Key insights of wPerf

• Insight 1: a bottleneck is an event whose optimization can improve all 
worker threads

• Insight 2: if thread B never waits for A, either directly or indirectly, 
then optimizing A’s event will not help B.
• Implication: A’s event is not a bottleneck, if B is a worker thread.



Key insights of wPerf

Insight 2: if thread B never waits for A, either directly or indirectly, then 
optimizing A’s event will not help B.

Thread A

Thread B

Disk



Key idea of wPerf

• Insight 1: a bottleneck is an event whose optimization can improve all 
worker threads

• Insight 2: if thread B never waits for A, either directly or indirectly, then 
optimizing A’s event will not help B.
• Implication: A’s event is not a bottleneck, if B is a worker thread.

• Key idea: narrow down the search space by excluding non-bottlenecks



Key idea of wPerf

• Construct a holistic view of the application using wait-for graph:
• Each thread is a vertex.
• A directed edge (A->B) means thread A sometimes is waiting for thread B.

The wait-for graph of the example

Knot

• Theorem: Each knot with at least one worker contains a bottleneck.
• A knot is a strongly connected component with no outgoing edges.
• Optimizing events outside of knot cannot improve worker in the knot.



Theory vs Practice

Theory Practice



Solution: trim unimportant edges

• wPerf trims edges with little impact on throughput.
• However, computing global impact is a challenging problem in the first place.

• Solution: use the waiting time spent on an edge to estimate the 
upper bound of the benefit of optimizing the edge.

• Challenge: nested waiting



An example of nested waiting
WaitingRunning

t0 t1 t2 Time

A

B

C

……

……

……

Wake up



Naïve approach to compute waiting time
WaitingRunning

t0 t1 t2 Time

A

B

C

……

……

……

Wake up

Naïve approach:
A waits for B from t0 to t2, add (t2-t0) to A->B. 
B waits for C from t0 to t1, add (t1-t0) to B->C.

Problem: underestimate B->C

Wait-for graph
A

B

C

(t2-t0)

(t1-t0)



wPerf’s solution
WaitingRunning

t0 t1 t2 Time

A

B

C

……

……

……

Wake up

Detailed algorithm: cascaded re-distribution

Wait-for graph
A

B

C

(t2-t0)

2(t1-t0)

2X



wPerf’s overall algorithm

1. Build the wait-for graph with weights.
2. Identify knot.
3. If the knot is smaller than a threshold, terminate.
4. Otherwise remove the edge with the lowest weight.
5. Go to 2.

Termination condition: smallest weight in the knot is larger than a threshold
-Threshold value depends on how much improvement the user expects.



Overall procedure of using wPerf

This step requires user’s effort

Annotation 
if necessary

Run the 
application 
with wPerf

Run wPerf
analyzer

Investigate the source 
code of bottleneckOptimize

Automatic



Evaluation

• Case studies: Can wPerf identify bottlenecks in real applications?
• We apply wPerf to seven open-source applications.
• To confirm wPerf’s accuracy, we tried to investigate and optimize the 

bottlenecks reported by wPerf.

• Overhead:
• How much does recording slow down the application?
• Required user’s effort?



Summary of case studies

Application Problem Speedup after 
Optimization

Recording 
Overhead 

Known 
fixes?

HBase 0.92 Blocking write 2.74x 3.37% Yes
ZooKeeper 3.4.11 Blocking write 4.83x 2.84% No
HDFS 2.70 Blocking write 2.56x 3.40% Yes
grep over NFS Blocking read 3.9x 0.77% No
BlockGrace Load imbalance 1.44x 8.04% No
Memcached Lock contention 1.64x 2.43% Partially
MySQL Lock contention 1.42x 14.64% Yes



Case study: HBase

Workload: write workload with 1KB KV pairs.

Our solution: reducing blocking between 
Handler and RespProc

HBase uses parallel flushing to alleviate this 
problem, but the default setting of 10 handler 
threads is not enough.

Wait-for graph of original RegionServer

Bottleneck



Case study: HBase

Workload: write workload with 1KB KV pairs.

Our solution: reducing blocking between 
Handler and RespProc

HBase uses parallel flushing to alleviate this 
problem, but the default setting of 10 handler 
threads is not enough.

Wait-for graph of original RegionServer

Use fast networks



Case study: HBase

Workload: write workload with 1KB KV pairs.

Our solution: reducing blocking between 
Handler and RespProc

HBase uses parallel flushing to alleviate this 
problem, but the default setting of 10 handler 
threads is not enough.

Wait-for graph of original RegionServer

Reduce blocking



Case study: HBase

Increasing handler count to 60 can 
improve throughput by 41%.

Comparing to the previous one, the 
weight of Handler->RespProc is much 
smaller (87.42 -> 16.54).

Optimize Handlers can further 
improve throughput.

New wait-for graph of RegionServer after optimization

Bottleneck



Users’ efforts when using wPerf

This step requires user’s effort

Annotation 
if necessary

Run the 
application 
with wPerf

Run wPerf
analyzer

Investigate the source 
code of bottleneckOptimize

Usually a few hoursA few minutes to a week

7 LOC for HBase 
12 LOC for MySQL



Summary and future work

• wPerf identifies events with large impacts on all worker threads.

• wPerf can find bottlenecks others cannot find.

• In the future, we plan to extend wPerf to distributed systems.

• You can find the source code of wPerf in github.
https://github.com/OSUSysLab/wPerf

• Poster number: 12 wPerf


