
Facebook, Inc.

Virtual Consensus in Delos

Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri, Xiao Shi
Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming Liu, Filip Gruszczynski
Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois Richard, Yee Jiun Song

the data plane

the control plane

the Facebook stack

NoSQL Databases Web AI/ML

Scheduler Config Naming Sharding
[Twine, OSDI 2020]

turtles all the way down…

…

the data plane

the control plane

the Facebook stack

NoSQL Databases Web AI/ML

Scheduler Config Naming Sharding

control plane storage

fault-tolerant
[zero-dependency, durable, highly available]

rich API
[transactions, range queries, secondary indices]

[Twine, OSDI 2020]

turtles all the way down…

…

the need for a new storage system

why not use an existing system?

fault-tolerance

ric
h

AP
I

MySQ
L

Zip
pyD

B

Zo
oKee

per

???

the need for a new storage system

why not modify an existing system?why not use an existing system?

fault-tolerance

ric
h

AP
I

MySQ
L

Zip
pyD

B

Zo
oKee

per

???
database

consensus

hard to change consensus
protocol (e.g., MySQL over ZAB)

hard to change database API
(e.g., add TXes to ZooKeeper)

the need for a new storage system

why not modify an existing system?why not use an existing system?

fault-tolerance

ric
h

AP
I

MySQ
L

Zip
pyD

B

Zo
oKee

per

???
database

consensus

hard to change consensus
protocol (e.g., MySQL over ZAB)

hard to change database API
(e.g., add TXes to ZooKeeper)

problem statement circa 2017:
can we build a zero-dependency, fault-tolerant system with a rich API… in months?

or: “how to build a production-ready storage system in eight months”

the Delos storage system

database
(materialized state)

shared log
(consensus)

append
checkTail
readNext

or: “how to build a production-ready storage system in eight months”

the Delos storage system

database
(materialized state)

shared log
(consensus)

append
checkTail
readNext

complex distributed
protocol the shared log is an API for consensus

CORFU (NSDI 2012), Tango (SOSP 2013), Hyder (SIGMOD 2015),
CorfuDB, LogDevice, Scalog (NSDI 2020)…

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

logical updates: e.g. “put x=5 if x==4”

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

logical updates: e.g. “put x=5 if x==4” simple protocols above the log

the Delos storage system: above the log

DelosTable

DelosRuntime

Client

database
(materialized state)

shared log
(consensus)

aware of upstream API
oblivious to upstream API

logical updates: e.g. “put x=5 if x==4”

easy to support new APIs

simple protocols above the log

the Delos storage system: below the log

database
(materialized state)

shared log
(consensus)

append
checkTail
readNext

the Delos storage system: below the log

database
(materialized state)

shared log
(consensus)

append
checkTail
readNext

(ZooKeeper shim) /log
- /log/entry0
- /log/entry1
- …

the Delos storage system: below the log

database
(materialized state)

shared log
(consensus)

append
checkTail
readNext

(ZooKeeper shim)

pros:
• fast to build/deploy
• highly reliable

/log
- /log/entry0
- /log/entry1
- …

the Delos storage system: below the log

database
(materialized state)

shared log
(consensus)

append
checkTail
readNext

(ZooKeeper shim)

pros:
• fast to build/deploy
• highly reliable
cons:
• very inefficient and slow
• service dependency

/log
- /log/entry0
- /log/entry1
- …

how do we develop a new shared log?
(without re-implementing MultiPaxos…)

how do we develop a new shared log?
(without re-implementing MultiPaxos…)

how do we deploy a new shared log?
(without service downtime…)

how do we develop a new shared log?
(without re-implementing MultiPaxos…)

how do we deploy a new shared log?
(without service downtime…)

Virtual Consensus!

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

ZooKeeper

Loglet
append
checkTail
readNext
sealZKLoglet

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

ZooKeeper

Loglet
append
checkTail
readNext
sealZKLoglet

[ver 0]
0 à inf : ZKLoglet

MetaStore

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

ZooKeeper

Loglet
append
checkTail
readNext
sealZKLoglet

[ver 0]
0 à inf : ZKLoglet

MetaStore

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

ZooKeeper

Loglet
append
checkTail
readNext
sealZKLoglet

[ver 0]
0 à inf : ZKLoglet
[ver 1]
0 à3 : ZKLoglet
3 à inf: LDLoglet

MetaStore

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

ZooKeeper

Loglet
append
checkTail
readNext
sealZKLoglet LDLoglet

LogDevice

[ver 0]
0 à inf : ZKLoglet
[ver 1]
0 à3 : ZKLoglet
3 à inf: LDLoglet

MetaStore

virtualizing consensus via the VirtualLog

VirtualLog append
checkTail
readNext

we can deploy a new Loglet without downtime!

ZooKeeper

Loglet
append
checkTail
readNext
sealZKLoglet LDLoglet

LogDevice

[ver 0]
0 à inf : ZKLoglet
[ver 1]
0 à3 : ZKLoglet
3 à inf: LDLoglet

MetaStore

difficult to build a log that is simple, fast, fault-tolerant

difficult to build a log that is simple, fast, fault-tolerant

[ver 0]
0 à inf : Loglet

MetaStore VirtualLog

simple, fault-tolerant

difficult to build a log that is simple, fast, fault-tolerant

[ver 0]
0 à inf : Loglet

MetaStore VirtualLog

Loglet

simple, fault-tolerant

simple, fast

difficult to build a log that is simple, fast, fault-tolerant

[ver 0]
0 à inf : Loglet

MetaStore VirtualLog

Loglet

simple, fault-tolerant

simple, fast
no fault-tolerant consensus;
only fault-tolerant seal

difficult to build a log that is simple, fast, fault-tolerant

[ver 0]
0 à inf : Loglet

MetaStore VirtualLog

Loglet

simple, fault-tolerant

simple, fast
no fault-tolerant consensus;
only fault-tolerant seal

necessary and sufficient source
of fault-tolerant consensus…

difficult to build a log that is simple, fast, fault-tolerant

[ver 0]
0 à inf : Loglet

MetaStore VirtualLog

Loglet

simple, fault-tolerant

simple, fast
no fault-tolerant consensus;
only fault-tolerant seal

necessary and sufficient source
of fault-tolerant consensus…

the VirtualLog handles all reconfiguration (including leader election);
the Loglet provides failure-free ordering

difficult to build a log that is simple, fast, fault-tolerant

[ver 0]
0 à inf : Loglet

MetaStore VirtualLog

Loglet

simple, fault-tolerant

simple, fast
no fault-tolerant consensus;
only fault-tolerant seal

necessary and sufficient source
of fault-tolerant consensus…

the VirtualLog handles all reconfiguration (including leader election);
the Loglet provides failure-free ordering

Lamport’s original Paxos
with no optimizations

the NativeLoglet

Delos Runtime (client) sequencer LogServer

the NativeLoglet

Delos Runtime (client) sequencer LogServer

quorum appends

the NativeLoglet

Delos Runtime (client) sequencer LogServer

quorum appends quorum checkTail

the NativeLoglet

Delos Runtime (client) LogServer

quorum appends quorum checkTail fast local reads

the NativeLoglet

Delos Runtime (client) sequencer LogServer

quorum appends quorum checkTail fast local reads fault-tolerant seal

switching logs mid-flight

deploying Loglets: converged vs. disaggregated

deploying Loglets: converged vs. disaggregated

log+DB on each server:
- fast local log reads
- fate-sharing

deploying Loglets: converged vs. disaggregated

log+DB on each server:
- fast local log reads
- fate-sharing

separate log and DB:
- less I/O contention
- independent scaling

deploying Loglets: converged vs. disaggregated

log+DB on each server:
- fast local log reads
- fate-sharing

separate log and DB:
- less I/O contention
- independent scaling

converged is preferred in production:
the DB wants fate-sharing with the log…

deploying Loglets: converged vs. disaggregated

log+DB on each server:
- fast local log reads
- fate-sharing

separate log and DB:
- less I/O contention
- independent scaling

converged is preferred in production:
the DB wants fate-sharing with the log…
(unless its own fate is bad…)

deploying Loglets: converged vs. disaggregated

log+DB on each server:
- fast local log reads
- fate-sharing

separate log and DB:
- less I/O contention
- independent scaling

converged is preferred in production:
the DB wants fate-sharing with the log…

… we can decouple fate on demand by
reconfiguring to a disaggregated log

(unless its own fate is bad…)

deploying Loglets: converged vs. disaggregated

log+DB on each server:
- fast local log reads
- fate-sharing

separate log and DB:
- less I/O contention
- independent scaling

converged is preferred in production:
the DB wants fate-sharing with the log…

… we can decouple fate on demand by
reconfiguring to a disaggregated log

(unless its own fate is bad…) 10X
higher throughput via disaggregation

composing Loglets: the StripedLoglet

DelosRuntime

composing Loglets: the StripedLoglet

DelosRuntime

composing Loglets: the StripedLoglet

DelosRuntime

0

0

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

2

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

23

3

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

23

3

DelosRuntime

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

23

3

DelosRuntime

6

6

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

23

3

DelosRuntime

6

6

rotating sequencer

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

23

3

DelosRuntime

6

6

sharded acceptors

composing Loglets: the StripedLoglet

DelosRuntime

0

0

1

1

2

23

3

DelosRuntime

6

6

1M+
1KB appends/s with 30 stripes

sharded acceptors

trimming the VirtualLog

ZKLoglet NativeLoglet

trimming the VirtualLog

ZKLoglet NativeLoglet

trim cold segments

trimming the VirtualLog

ZKLoglet NativeLoglet

trim cold segments

remap cold segments
- InfiniteLogà PiT restore
- more durability

BackupLoglet

trimming the VirtualLog

NativeLoglet

trim cold segments

remap cold segments
- InfiniteLogà PiT restore
- more durability

BackupLoglet

trimming the VirtualLog

NativeLoglet

trim cold segments

remap cold segments
- InfiniteLogà PiT restore
- more durability

remap single slots
- delete poison pill entries
- less durability

BackupLoglet

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

DelosTable

fault-tolerant DelosRuntime

VirtualLog

ZKLoglet…in months

rich API

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

DelosTable

fault-tolerant DelosRuntime

VirtualLog

ZKLoglet…in months

rich API

NativeLoglet

zero-dependency

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

DelosTable

fault-tolerant DelosRuntime

VirtualLog

ZKLoglet…in months

rich API

NativeLoglet

zero-dependency

2
years in production

1.8B
TXes per day

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

DelosTable

fault-tolerant DelosRuntime

VirtualLog

ZKLoglet…in months

rich API

NativeLoglet

zero-dependency

DelosZK extensible APIs

2
years in production

1.8B
TXes per day

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

DelosTable

fault-tolerant DelosRuntime

VirtualLog

ZKLoglet…in months

rich API

NativeLoglet

zero-dependency

DelosZK

LDLoglet

extensible APIs

extensible Loglets

2
years in production

1.8B
TXes per day

original goal: can we build a zero-dependency, fault-tolerant system
with a rich API… in months?

Delos as a platform

DelosTable

fault-tolerant DelosRuntime

VirtualLog

ZKLoglet…in months

rich API

NativeLoglet

zero-dependency

DelosZK

LDLoglet

extensible APIs

extensible Loglets

common platform 2
years in production

1.8B
TXes per day

conclusion

Delos is a new storage system at the bottom of the Facebook stack

virtualizing consensus allowed us to develop and deploy new protocols

production benefits immediately from new research…
…new research can reach production quickly

thank you!

contact: mbalakrishnan at fb.com

