
Microsecond-scale Preemption for Concurrent
GPU-accelerated DNN Inferences

Mingcong Han, Hanze Zhang, Rong Chen, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Shanghai AI Laboratory

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

Motivation

DNNs are widely adopted by
modern intelligent applications

Motivation

Obstacle Detection

Fatigue Detection

Real-time tasks
 Latency critical

Best-effort tasks
 No hard real-time requirement

Motivation

Real-time tasks

Best-effort tasks

Real-time tasks

Best-effort tasks

√ Low Inference Latency
× Low Resource Utilization

? Low Inference Latency
√ High Resource Utilization

GPU-accelerated DNN inference

kernel

Time

G
PU

task (a list of kernels)

block

Compute Unit (CU)

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

Time

G
PUSequential

Execution

BE Task#1 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

Time

G
PUSequential

Execution

BE Task#1 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

Time

G
PUSequential

Execution

BE Task#1 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

no preemption

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving

G
PUSequential

Execution

no preemption

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution

BE Task#2 Arriving

resource wasted

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution

BE Task#2 Arriving

• High latency for RT tasks
• Low throughput (not work-conserving)

resource wasted

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
preemption + execution

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
preemption + execution

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
preemption + execution

3ms

4ms

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

wait for the running block

G
PUBlock-level

Preemption
Starvation

no concurrency

BE Task#2 Arriving

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

BE Task#2 Arriving

• (Not always) low latency for RT tasks
• Low throughput (not work-conserving)

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

interference

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

interference

4ms

40ms

BE Task#2 Arriving

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

interference

BE Task#2 Arriving

• High latency for RT tasks
• High throughput (work-conserving)

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

interference

BE Task#2 Arriving

• High latency for RT tasks
• High throughput (work-conserving)

• (Not always) low latency for RT tasks
• Low throughput (not work-conserving)

• High latency for RT tasks
• Low throughput (not work-conserving)

wait for the running block

Existing GPU Task Scheduling
Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

Preemption
Latency

(RT)Task
Latency

Overall
Latency

TimeRT Task#1 Arriving
no preemption

G
PUSequential

Execution
no concurrency

wait-based approach

G
PUBlock-level

Preemption
no concurrency

G
PUMulti-

Streams

concurrent

interference

BE Task#2 Arriving

Challenge：Achieve both
• low-latency for RT tasks and
• work-conserving for BE tasks

REEF: GPU-accelerated DNN Inference System

REEF

GP
U

RT Task#1 Arriving

Design Goal 1:
• Low-latency for real-time tasks

Design Goal 2:
• Work-conserving for best-effort tasks

Reset-based Preemption:
• μs-scale preemption based on idempotence

Dynamic Kernel Padding:
• controlled concurrent execution based on latency predictability

REEF overview: architecture

Model Compiler

Code Transformer

Kernel Profiler

DNN

R
V
B

Model Pool

GPU Runtime

BE Apps RT Apps

esNet
gg
ert

Scheduler

Task Queues

polling

Model Loader Preemption

BE Apps RT Apps
R

User code Original code REEF code

input

Offline Online

RTBE

Dynamic Kernel Padding

generate DNN models

Task queues:
• one FIFO queue for RT tasks
• several FIFO queues for BE tasks

Execution modes:
normal mode:
• no RT task in RT queue
• execute BE tasks concurrently
real-time mode:
• at least one RT task in RT queue
• execute one RT task a time

preempt BE tasks when RT
task arrives in normal mode

execute both RT and BE tasks
concurrently in real-time mode

REEF overview: scheduling example
G

PU

1

Block of BE Task
Block of RT Task
Task Arriving

Timer1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

REEF overview: scheduling example
G

PU

1

1

1

1

Block of BE Task
Block of RT Task
Task Arriving

Timer1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

REEF overview: scheduling example
G

PU

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 b1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 b1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 b1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

In normal mode, kernels are executed
concurrently in multiple GPU streams

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

Block of BE Task
Block of RT Task
Task Arriving

Timer1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

Block of BE Task
Block of RT Task
Task Arriving

Timer1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1
1 v1

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 v1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

reset-based preemption

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 v1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

switch to real-time mode

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 v1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 v1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

Block of BE Task
Block of RT Task
Task Arriving

Timer1 v1

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

dynamic kernel padding

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

1 221

Block of BE Task
Block of RT Task
Task Arriving

Timer1 v1 r2b2

Best-effort Task#1 Real-time Task#1 Best-effort Task#2

block

kernel
task

1 b1

switch back to normal mode

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

1 221 Timer1 v1 r2b2
1 b1

Real-time ModeNormal Mode Normal Mode
 Low latency for real-time tasks

 Normal Mode: preempt best-effort tasks in a few μs.
 Real-time Mode: get the GPU resources as many as possible.

 Work conserving for best-effort tasks
 Normal Mode: fully utilize GPU resources by using GPU streams.
 Real-time Mode: use the GPU resources leftover by real-time tasks.

REEF overview: scheduling example
G

PU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

1 221 Timer1 v1 r2b2
1 b1

Real-time ModeNormal Mode Normal Mode
 Low latency for real-time tasks

 Normal Mode: preempt best-effort tasks in a few μs
 Real-time Mode: get the GPU resources as many as possible

 Work conserving for best-effort tasks
 Normal Mode: fully utilize GPU resources by using GPU streams
 Real-time Mode: use the GPU resources leftover by real-time tasks

Reset-based Preemption

Dynamic Kernel Padding

Reset-Based Preemption

Design Goal:
Preempt concurrent BE tasks in a few μs

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
Time

G
PU

Key Observation

Idempotence

device codes
__global__ void conv_relu(in, weight, out):
1 sum = 0;
2 for i in range(0,3)
3 for j in range(0,3)
4 sum += in[..] weight[..]
5 out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):
6 sum = 0;
7 for i in range(0,512)
8 sum += in[..] weight[..]
9 out[..] = sum + bias[..]

Key Observation

Idempotence

device codes
__global__ void conv_relu(in, weight, out):
1 sum = 0;
2 for i in range(0,3)
3 for j in range(0,3)
4 sum += in[..] weight[..]
5 out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):
6 sum = 0;
7 for i in range(0,512)
8 sum += in[..] weight[..]
9 out[..] = sum + bias[..]

Output
(write-only)

Input (read-only)

Key Observation

Idempotence

device codes
__global__ void conv_relu(in, weight, out):
1 sum = 0;
2 for i in range(0,3)
3 for j in range(0,3)
4 sum += in[..] weight[..]
5 out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):
6 sum = 0;
7 for i in range(0,512)
8 sum += in[..] weight[..]
9 out[..] = sum + bias[..]

Basic idea:
• Preempt a task by killing the running kernels
• Restore a task by re-executing the preempted kernels

Input (read-only)

Output
(write-only)

Reset-based Preemption

61
CUCUCUCU

Device
Memory

GPU

Scheduler

GPU Runtime

Command Processor

GPU Streams API

Host Queue

Device Queue

Preemption
Module

Key Idea:
Reset kernels in everywhere

Dynamic Kernel Padding

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
Time

G
PU

Design Goal:
Allow RT/BE tasks to execute concurrently

without interference to RT tasks

Key Observation

Latency Predictability
Basic Idea:

Allow shorter BE kernels to co-execute
with longer RT kernels

Dynamic Kernel Padding

Key Idea:
Dynamically pad RT kernels with BE kernels

G
PU

Time

Dynamic Kernel Padding

Key Idea:
Dynamically pad RT kernels with BE kernels

G
PU

RT kernel cannot
utilize all CUs

Time

Dynamic Kernel Padding
G

PU

Pad BE kernels with RT kernel

Time

Key Idea:
Dynamically pad RT kernels with BE kernels

Dynamic Kernel Padding
G

PU

The BE kernel must be shorter than RT kernelTime

Key Idea:
Dynamically pad RT kernels with BE kernels

Dynamic Kernel Padding
G

PU

The BE kernel must be shorter than RT kernelTime

Key Idea:
Dynamically pad RT kernels with BE kernels

Latency Predictability

Dynamic Kernel Padding
G

PU

The BE kernel must be shorter than RT kernel
Time

Key Idea:
Dynamically pad RT kernels with BE kernels

Latency Predictability

Dynamic Kernel Padding
G

PU

Time

Key Idea:
Dynamically pad RT kernels with BE kernels

Dynamic Kernel Padding
G

PU

The BE kernel must be shorter than RT kernel

Latency Predictability
Time

Key Idea:
Dynamically pad RT kernels with BE kernels

Dynamic Kernel Padding
G

PU

Time

Key Idea:
Dynamically pad RT kernels with BE kernels

Dynamic Kernel Padding
G

PU

Time

Key Idea:
Dynamically pad RT kernels with BE kernels

Evaluation

• Hardware Environments
– AMD Instinct MI50 GPU (60 CUs and 16 GB memory)
– Intel Core i7-10700 CPU (8 cores) + 16 GB of DRAM

• Software Environments
– ROCm 4.3.0
– Apache TVM 0.8.0

Evaluation

• DNN Inference Serving Benchmark (DISB)
– A new benchmark for DNN inferences in real-time scenarios
– Five representative DNN models:

• ResNet-152 (RNET), DenseNet-201(DNET) ,VGG-19 (VGG),
Inception-v3(IN3), DistilBert(BERT)

– Five workloads

Issue BE inference requests (close-loop)

Issue RT inference requests (fixed frequency)

saturate our testbed

Evaluation

• DNN Inference Serving Benchmark (DISB)
– A new benchmark for DNN inferences in real-time scenarios
– Five representative DNN models:

• ResNet-152 (RNET), DenseNet-201(DNET) ,VGG-19 (VGG),
Inception-v3(IN3), DistilBert(BERT)

– Five workloads

• Real-world Trace
– From an open autonomous driving platform (i.e., ApolloAuto)

Evaluation

• Comparing targets
– RT-Only: dedicate the GPU for RT tasks
– SEQ: sequentially execute tasks without preemption
– GPUStreams: execute RT/BE tasks concurrently in multiple GPU streams

Evaluation
REEF only incurs at most

2% latency overhead for RT tasks
compared with RT-Only

1.6x

4.3x
7.7x

1.14x
3.0x 2.9x

0.5% 1% 1.5% 1.5% 1% 2%

REEF can improve overall
throughput by 1.14× ~ 7.7×

compared with RT-Only

Evaluation

REEF can avoid starvation
for BE tasks

1.14x

Evaluation

REEF achieves μs-scale
preemption latency

42μs 38μs
95μs 101μs 96μs

36μs 38μs 35μs 35μs 36μs

Conclusion

• REEF: a GPU-accelerated DNN inference serving system
– Achieve both low-latency (2% latency overhead for real-time tasks)

and work-conserving (1.14x – 7.7x throughput improvement)
– Reset-based preemption: μs-scale preemption based on idempotence
– Dynamic kernel padding: controlled concurrent execution based on latency

predictability

Thanks & QA

	Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences
	Motivation
	Motivation
	Motivation
	GPU-accelerated DNN inference
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	Existing GPU Task Scheduling
	REEF: GPU-accelerated DNN Inference System
	REEF overview: architecture
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	REEF overview: scheduling example
	Reset-Based Preemption
	Key Observation
	Key Observation
	Key Observation
	Reset-based Preemption
	Dynamic Kernel Padding
	Key Observation
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Dynamic Kernel Padding
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion

