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Motivation

DNNs are widely adopted by 
modern intelligent applications
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Obstacle Detection

Fatigue Detection

Real-time tasks
 Latency critical

Best-effort tasks
 No hard real-time requirement
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√   Low Inference Latency
× Low Resource Utilization

? Low Inference Latency
√   High Resource Utilization
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Challenge：Achieve both 
• low-latency for RT tasks and
• work-conserving for BE tasks



REEF: GPU-accelerated DNN Inference System

REEF

GP
U

RT Task#1 Arriving

Design Goal 1:
• Low-latency for real-time tasks

Design Goal 2:
• Work-conserving for best-effort tasks

Reset-based Preemption:
• μs-scale preemption based on idempotence

Dynamic Kernel Padding:
• controlled concurrent execution based on latency predictability



REEF overview: architecture
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input
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generate DNN models

Task queues:
• one FIFO queue for RT tasks
• several FIFO queues for BE tasks

Execution modes:
normal mode: 
• no RT task in RT queue
• execute BE tasks concurrently
real-time mode: 
• at least one RT task in RT queue
• execute one RT task a time

preempt BE tasks when RT
task arrives in normal mode

execute both RT and BE tasks 
concurrently in real-time mode
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In normal mode, kernels are executed 
concurrently in multiple GPU streams
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Real-time ModeNormal Mode Normal Mode
 Low latency for real-time tasks

 Normal Mode: preempt best-effort tasks in a few μs.
 Real-time Mode: get the GPU resources as many as possible.

 Work conserving for best-effort tasks
 Normal Mode: fully utilize GPU resources by using GPU streams.
 Real-time Mode: use the GPU resources leftover by real-time tasks.
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Real-time ModeNormal Mode Normal Mode
 Low latency for real-time tasks

 Normal Mode: preempt best-effort tasks in a few μs
 Real-time Mode: get the GPU resources as many as possible

 Work conserving for best-effort tasks
 Normal Mode: fully utilize GPU resources by using GPU streams
 Real-time Mode: use the GPU resources leftover by real-time tasks

Reset-based Preemption

Dynamic Kernel Padding



Reset-Based Preemption

Design Goal:
Preempt concurrent BE tasks in a few μs
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Key Observation

Idempotence

# device codes
__global__ void conv_relu(in, weight, out):
1   sum = 0;
2   for i in range(0,3)
3      for j in range(0,3) 
4         sum += in[..]   weight[..]
5   out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):
6   sum = 0;
7   for i in range(0,512)
8      sum += in[..]   weight[..]
9   out[..] = sum + bias[..]
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Key Observation

Idempotence

# device codes
__global__ void conv_relu(in, weight, out):
1   sum = 0;
2   for i in range(0,3)
3      for j in range(0,3) 
4         sum += in[..]   weight[..]
5   out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):
6   sum = 0;
7   for i in range(0,512)
8      sum += in[..]   weight[..]
9   out[..] = sum + bias[..]

  
 

          
       
       
      
       
       
          

Basic idea:
• Preempt a task by killing the running kernels
• Restore a task by re-executing the preempted kernels

Input (read-only)

Output
(write-only)



Reset-based Preemption
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Memory

GPU

Scheduler

GPU Runtime

Command Processor

GPU Streams API

Host Queue

Device Queue

Preemption
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Key Idea:
Reset kernels in everywhere



Dynamic Kernel Padding
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Design Goal:
Allow RT/BE tasks to execute concurrently

without interference to RT tasks



Key Observation

Latency Predictability
Basic Idea:

Allow shorter BE kernels to co-execute 
with longer RT kernels
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Evaluation

• Hardware Environments
– AMD Instinct MI50 GPU (60 CUs and 16 GB memory)
– Intel Core i7-10700 CPU (8 cores) + 16 GB of DRAM

• Software Environments
– ROCm 4.3.0 
– Apache TVM 0.8.0



Evaluation

• DNN Inference Serving Benchmark (DISB)
– A new benchmark for DNN inferences in real-time scenarios
– Five representative DNN models:

• ResNet-152 (RNET), DenseNet-201(DNET) ,VGG-19 (VGG), 
Inception-v3(IN3), DistilBert(BERT)

– Five workloads

Issue BE inference requests (close-loop)

Issue RT inference requests (fixed frequency)

saturate our testbed



Evaluation

• DNN Inference Serving Benchmark (DISB)
– A new benchmark for DNN inferences in real-time scenarios
– Five representative DNN models:

• ResNet-152 (RNET), DenseNet-201(DNET) ,VGG-19 (VGG), 
Inception-v3(IN3), DistilBert(BERT)

– Five workloads

• Real-world Trace
– From an open autonomous driving platform (i.e., ApolloAuto)



Evaluation

• Comparing targets
– RT-Only: dedicate the GPU for RT tasks
– SEQ: sequentially execute tasks without preemption
– GPUStreams: execute RT/BE tasks concurrently in multiple GPU streams



Evaluation
REEF only incurs at most 

2% latency overhead for RT tasks
compared with RT-Only

1.6x

4.3x
7.7x

1.14x
3.0x 2.9x

0.5% 1% 1.5% 1.5% 1% 2%

REEF can improve overall 
throughput by 1.14× ~ 7.7×

compared with RT-Only



Evaluation

REEF can avoid starvation 
for BE tasks

1.14x



Evaluation

REEF achieves μs-scale
preemption latency

42μs 38μs
95μs 101μs 96μs

36μs 38μs 35μs 35μs 36μs



Conclusion

• REEF: a GPU-accelerated DNN inference serving system
– Achieve both low-latency (2% latency overhead for real-time tasks) 

and work-conserving (1.14x – 7.7x throughput improvement)
– Reset-based preemption: μs-scale preemption based on idempotence
– Dynamic kernel padding:  controlled concurrent execution based on latency 

predictability

Thanks & QA
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