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What are Metastable Failures?

* Example: Retry Storm

A Trigger:
Background Load = 1,400 RPS

interference
l Retry starts

A

RPS

1 Permanent overload

\ Trigger removed:
Capacity recovered

Load = 700 RPS

Time)

Takeaway: Permanent overload even after the trigger is removed



Metastable Failures are Prevalent

e Can be catastrophic

3 00 Meta
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* Rebooting

Insight: These different-looking failures can be characterized under one taxonomy.

* Adding more resources
* Tweaking configurations




Metastability in the Wild — Survey

* We search through over 600 public post-mortem incident reports
* |dentify 21 metastable failures in O 00 Meta
@

* Large cloud infrastructure providers
* Smaller companies and projects circleci
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e Can cause major outages
* 4-10 hours most commonly =
* Incorrect handling leads to future incidents
* An important class of failures to study
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Defining Metastability — System States

Overloading trigger

Metastable 5ustainingx1'>
Failure 2l

[Bronson et al.]




Survey Ssummary

* Triggers
* About 45% are due to engineer errors
e Buggy configuration or code deployments

X
* Latent bugs wad\f‘gdedeas
* About 35% are due to load spikes s

* 45% involve multiple triggers

Overloading trigger

 Sustaining effects
* Load increase due to retries (over 50%) Metastable Sustaining
* Expensive error handling Failure effect
* Lock contention
* Performance degradation due to leader election churn




Survey Ssummary

* Recovery

* Direct load-shedding
* Throttling
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* Changing workload parameters ©

* Indirect load-shedding

 Reboots

* Policy changes Metastable Sustaining
Failure effect

Overloading trigger




Metastability Taxonomy — Trigger

* One or more events that overload the system

* Two types:
R Load-spike trigger | trigger
RPS / | rpst
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Metastability Taxonomy — Sustaining effect

* A feedback loop that keeps the system overloaded

* Two types:

RPS
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Capacity

Four Metastability Scenarios

Load-spike trigger Capacity-decreasing trigger
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Four Metastability Scenarios
Load-spike trigger
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Garbage Collection (GC)
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Metastability due to GC — Sustaining Effect

Load-spike

\

> High queue length

Capacity \
degradation High GC behavior
amplification

Job processing

slows down
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* More active objects to
process during a GC cycle

* Higher memory pressure
causes more GC cycles

e GC causes application to
pause and slow down

Sustaining effect: Contention between arriving traffic and GC consuming resources




Metastability due to GC — Timeseries

* Load-spike triggers high queue length and high GC behavior
* Queue continues building up
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Metastability due to GC — Timeseries

* Load-spike triggers high queue length and high GC behavior
* Queue continues building up
* Aggressive load-shedding does not lower the GC behavior

Load-shedding: 1st 2nd 3rd
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Degrees of Vulnerabilities

* System load determines vulnerability
* Tradeoff: Efficiency vs. Vulnerability

Trigger duration (s)
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Degrees of Vulnerabilities

» System load determines vulnerability ¢ System configs impact vulnerability

* Tradeoff: Efficiency vs. Vulnerability * Larger memory = Lower vulnerability
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Lessons

* Detect and react to trigger quickly to avoid metastable failures
 Sustaining effects may not be immediate
 Sustaining effects take time to amplify the overload

 Design systems to eliminate/minimize sustaining effects

« Common case optimizations may cause or exacerbate sustaining effect
—2>Might not be possible to eliminate sustaining effect entirely
—>Consider the slow path, not just the fast path



Lessons

* Understand the degree of vulnerability of the system to control risk

* System load and capacity determines vulnerability
—Load testing can reveal issues
-2 Adding capacity can lower vulnerability

 System config affects vulnerability
- Control relevant configs to lower vulnerability



Lessons

* Recover from metastable failure by breaking the sustaining effect cycle

* Fix the triggers to prevent recurrence
* Negate load spikes by load shedding
* Rollback or halt deployments
* Hot-fix software bugs

* End the overload to break the sustaining effect cycle
* Load-shedding (e.g., admission control, graceful degradation)
* Increase capacity
* Change policy to reduce amplification factors



Conclusion

* Metastable failure — permanent overload even after triggers are removed
* They are prevalent and can cause major outages

* Understanding the sustaining effects and the degree of vulnerability in
systems is critical to prevent metastable failures

* Three open-sourced metastable failure examples
https://github.com/lexiangh/Metastability U —
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