Metastable Failures in the Wild

Lexiang Huang3*, Matthew Magnusson?”, Abishek Bangalore Muralikrishna?, Salman Estyak?,

Rebecca Isaacs3, Abutalib Aghayev?!, Timothy Zhu?, and Aleksey Charapko?

1 g 2 3
(Y r)
[@)
? @
®

TT, University of
*Equal contribution PennState® NewHampghire

What are Metastable Failures?

* Example: Retry Storm

A Trigger:
Background Load = 1,400 RPS

interference
l Retry starts

A

RPS

1 Permanent overload

\ Trigger removed:
Capacity recovered

Load = 700 RPS

Time)

Takeaway: Permanent overload even after the trigger is removed

Metastable Failures are Prevalent

e Can be catastrophic

3 00 Meta

* E.g., 4 out of 15 major outages in the last decade at AWS circleci
km ff\“»\
. . «f) f:\/\ \S
* Ad-hoc diagnosis aws = Wﬂ,@
* Persistent congestion WOz 2ue
* Persistent overload N ol
* Retry storms . WIKIPEDIA
e Death Spirals . MlcrOSOft The Free Encyclopedia
. etc. B Azure
o~ elastic ﬁ’;/ﬁ%
* Ad-hoc recovery t cloud cassandra
* Load-shedding J
* Rebooting

Insight: These different-looking failures can be characterized under one taxonomy.

* Adding more resources
* Tweaking configurations

Metastability in the Wild — Survey

* We search through over 600 public post-mortem incident reports
* |dentify 21 metastable failures in O 00 Meta
@

* Large cloud infrastructure providers
* Smaller companies and projects circleci
PR
‘a9
aws e ’

Wy
DI
& ol

- WIKIPEDIA
. M ICIro SOft The Free Encyclopedia
Azure

e Can cause major outages
* 4-10 hours most commonly =
* Incorrect handling leads to future incidents
* An important class of failures to study

[4
/ !’ui ?

cassandra

Defining Metastability — System States

Overloading trigger

Metastable 5ustainingx1'>
Failure 2l

[Bronson et al.]

Survey Ssummary

* Triggers
* About 45% are due to engineer errors
e Buggy configuration or code deployments

X
* Latent bugs wad\f‘gdedeas
* About 35% are due to load spikes s

* 45% involve multiple triggers

Overloading trigger

 Sustaining effects
* Load increase due to retries (over 50%) Metastable Sustaining
* Expensive error handling Failure effect
* Lock contention
* Performance degradation due to leader election churn

Survey Ssummary

* Recovery

* Direct load-shedding
* Throttling

. (2
) 20 e
* Dropping requests ‘:aoac‘\“d
. \\
* Changing workload parameters ©

* Indirect load-shedding

 Reboots

* Policy changes Metastable Sustaining
Failure effect

Overloading trigger

Metastability Taxonomy — Trigger

* One or more events that overload the system

* Two types:
R Load-spike trigger | trigger
RPS / | rpst

I

10verload I
I IOverIoad
I
I

Time I Timz 8

|

Metastability Taxonomy — Sustaining effect

* A feedback loop that keeps the system overloaded

* Two types:

RPS

>

Workload amplification

Amplification

continues \

Amplification

starts
/, Trigger fixed

Trigger applied

Time

A
RPS

Trigger applied
~

Amplification
starts

amplification

Trigger fixed

\

Amplification
&« continues

Time

Capacity

Four Metastability Scenarios

Load-spike trigger Capacity-decreasing trigger

c I) 10°
- O 5 o] = s
C o C . 'd d I o 10%; trigger 5] fail
o ommon Incidents due to " g0
—— O
x .; M . I ‘_;‘10_14 g 1031
o = retries in the survey 2 Lot
Q. e
; I 8 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
E Time (seconds)
m I [] L]
Replicated State Machine
I I I I I I I I I I I + I I I I I I I I I I I —_—
j j i T j 60000 I 1.0
L =900 | 1.25 ~
- = 280 _ L 0.8
S o S 0r N P S 1.00 -
o et @ 240} {800 = 140000 T S lat 5
b @ 220} 5] d 0.75 atency 0.6 S
L m 8 ‘5 430000 — i”;]
© O o 200¢ {700 € > I 9 950 A Cache hitrate | 0.4 2
-c 7] > {20000 © s ©
Y= g 180p 1650 © 3 = Error rate =
E = 0%160, Leoo 8 {10000 I — 0.25 A 0.2 T
o
QD Q— 140 : 4550 1 0.00
m 0 200 400 600 800 1000 1200 T T T T T T T 0.0
E Time (s) 0 20 40 60 80 100 120
'C (1o} time (second)

Garbage Collection (GC) | Look-aside Cache 10

Four Metastability Scenarios
Load-spike trigger

Time (seconds)

I w
© 109
S 5 success
I o 10t trigger = 10 fail
7]
o 210°
O 0
I T . 103
= :
T R I + LI , | |
I ® 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

time (second)

11

Garbage Collection (GC)

| 10
T T T T T 460000 |
: -g =900 1.25
1850 T5 450000 . F0.8 o
S (o)] £ < 35 1.00 A =
Q = C -
>. o [yt it 1800 — {40000 =y S latency | 0.6 5
ofd .; - o 750 g [o 0.75 1 ' g
o =mm m o o 7300005 L">:]
QO @© (&) 2 700 g 2 S 0.50 - Cache hitrate | 0.4 %
(¢ -c fr—t o 650 O 120000 & g Error rate =
Q— (C = Q o © -
-t © m—m g 00 @ 410000 0.25 1 Lo2 T
() «
(e]0) Q X {550 0 0.00 -
U m 0 200 400 600 800 1000 1200 T T T T T T T 0.0
= Time (s) I 0 20 40 60 80 100 120

Metastability due to GC — Sustaining Effect

Load-spike

\

> High queue length

Capacity \
degradation High GC behavior
amplification

Job processing

slows down

400 -

w
o
o

20 40 60
Queue length

.;C
’0

55
N

.
[
.
3
o ©
3
e0 ®
o

o

250 500 750
GC duration (ms)

* More active objects to
process during a GC cycle

* Higher memory pressure
causes more GC cycles

e GC causes application to
pause and slow down

Sustaining effect: Contention between arriving traffic and GC consuming resources

Metastability due to GC — Timeseries

* Load-spike triggers high queue length and high GC behavior
* Queue continues building up

S 1900 10999 — System Load
c .)
@) 1850 7, 150000 —— GC duration
o S < |— Queue length
N 4800 — 140000 O
o 5 3
v 1720 5 130000 "
-ILB 4700 S
v 2 20000 ©
g 1650 =2
5 < 110000
U -
4 1600 ©
o'
= ' ' . . ds50 19
0 20q 400 600 800 1000 1200

' Time (s) 13

Metastability due to GC — Timeseries

* Load-spike triggers high queue length and high GC behavior
* Queue continues building up
* Aggressive load-shedding does not lower the GC behavior

Load-shedding: 1st 2nd 3rd

—— System Load
—— GCduration

—— Queue length

Requests per second

0 200 400 600 800 1000 1200
Time (s) 14

Degrees of Vulnerabilities

* System load determines vulnerability
* Tradeoff: Efficiency vs. Vulnerability

Trigger duration (s)
= N w H U (@)}
o o o o o o

o

Stable --> Higher load
Jdregion @ <wunmEE 1 -
° MSmaller trigger
. \l': required to cause
| ana
i Vulnerable ‘@ metastability
region
1 T T T T
60 80 100 120 140 160 180 200

Requests per second

Max heap size = 256 MB

15

Degrees of Vulnerabilities

» System load determines vulnerability ¢ System configs impact vulnerability

* Tradeoff: Efficiency vs. Vulnerability * Larger memory = Lower vulnerability
60 60
w201 % 50 -
C C
S 40 - S 40 -
e Stable B Stable
3 30- -———a --QI Metastable 3 301 ————
(é 20 -~ % 20 -
E 10 4 Vulnerable E 10 - Vu-nerable
region region
0 T T T T . r | 0 T T T T T T 1
60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
Requests per second Requests per second

Max heap size = 256 MB Max heap size = 384 MB
16

Lessons

* Detect and react to trigger quickly to avoid metastable failures
 Sustaining effects may not be immediate
 Sustaining effects take time to amplify the overload

 Design systems to eliminate/minimize sustaining effects

« Common case optimizations may cause or exacerbate sustaining effect
—2>Might not be possible to eliminate sustaining effect entirely
—>Consider the slow path, not just the fast path

Lessons

* Understand the degree of vulnerability of the system to control risk

* System load and capacity determines vulnerability
—Load testing can reveal issues
-2 Adding capacity can lower vulnerability

 System config affects vulnerability
- Control relevant configs to lower vulnerability

Lessons

* Recover from metastable failure by breaking the sustaining effect cycle

* Fix the triggers to prevent recurrence
* Negate load spikes by load shedding
* Rollback or halt deployments
* Hot-fix software bugs

* End the overload to break the sustaining effect cycle
* Load-shedding (e.g., admission control, graceful degradation)
* Increase capacity
* Change policy to reduce amplification factors

Conclusion

* Metastable failure — permanent overload even after triggers are removed
* They are prevalent and can cause major outages

* Understanding the sustaining effects and the degree of vulnerability in
systems is critical to prevent metastable failures

* Three open-sourced metastable failure examples
https://github.com/lexiangh/Metastability U —

EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

