
Metastable Failures in the Wild
Lexiang Huang1,3*, Matthew Magnusson2*, Abishek Bangalore Muralikrishna2, Salman Estyak1, 

Rebecca Isaacs3, Abutalib Aghayev1, Timothy Zhu1, and Aleksey Charapko2

*Equal contribution

1 2 3



What are Metastable Failures?
• Example: Retry Storm

Takeaway: Permanent overload even after the trigger is removed

536

7LPH

536

536 536

7LPH

7LPH 7LPH

Capacity = 1,000 RPS

Capacity = 600 RPS

Load = 700 RPS

Load = 1,400 RPS
Trigger:
Background 
interference 

Retry starts Permanent overload

Trigger removed:
Capacity recovered

2



Metastable Failures are Prevalent
• Can be catastrophic

• E.g., 4 out of 15 major outages in the last decade at AWS

• Ad-hoc diagnosis
• Persistent congestion
• Persistent overload
• Retry storms
• Death spirals 
• etc.

• Ad-hoc recovery
• Load-shedding
• Rebooting
• Adding more resources
• Tweaking configurations

Insight: These different-looking failures can be characterized under one taxonomy3



Metastability in the Wild – Survey

• We search through over 600 public post-mortem incident reports
• Identify 21 metastable failures in

• Large cloud infrastructure providers
• Smaller companies and projects

• Can cause major outages
• 4-10 hours most commonly
• Incorrect handling leads to future incidents
• An important class of failures to study

4



Defining Metastability – System States

Stable

Vulnerable

Metastable
Failure

Load increase

or capacity decrease

Overloading trigger

Recovery

[Bronson et al.]

Sustaining
effect

5



Survey Summary

• Triggers
• About 45% are due to engineer errors

• Buggy configuration or code deployments
• Latent bugs

• About 35% are due to load spikes
• 45% involve multiple triggers

• Sustaining effects
• Load increase due to retries (over 50%)
• Expensive error handling
• Lock contention
• Performance degradation due to leader election churn

6

Stable

Vulnerable

Metastable
Failure

Load increase

or capacity decrease

Overloading trigger

Recovery Sustaining
effect



Survey Summary

• Recovery
• Direct load-shedding

• Throttling
• Dropping requests
• Changing workload parameters

• Indirect load-shedding
• Reboots
• Policy changes 

7

Stable

Vulnerable

Metastable
Failure

Load increase

or capacity decrease

Overloading trigger

Recovery Sustaining
effect



Metastability Taxonomy – Trigger

• One or more events that overload the system
• Two types:

Load-spike trigger Capacity-decreasing trigger
536

7LPH

536

7LPH

536

7LPH

536

7LPH

Overload

Overload

8



Metastability Taxonomy – Sustaining effect

• A feedback loop that keeps the system overloaded
• Two types:

536

7LPH

536

7LPH

536

7LPH

536

7LPH

Workload amplification Capacity degradation amplification

Trigger fixed

Amplification 
continues

Trigger fixed

Amplification 
continues

Amplification 
starts

Amplification 
starts

Trigger applied

Trigger applied

9



Four Metastability Scenarios
Load-spike trigger Capacity-decreasing trigger

W
or

kl
oa

d 
am

pl
ifi

ca
tio

n

Ca
pa

ci
ty

 
de

gr
ad

at
io

n 
am

pl
ifi

ca
tio

n

Common incidents due to 
retries in the survey

Replicated State Machine

Garbage Collection (GC) Look-aside Cache 10



Four Metastability Scenarios
Load-spike trigger Capacity-decreasing trigger

W
or

kl
oa

d 
am

pl
ifi

ca
tio

n

Ca
pa

ci
ty

 
de

gr
ad

at
io

n 
am

pl
ifi

ca
tio

n

Common incidents due to 
retries in the survey

Replicated State Machine

Garbage Collection (GC) Look-aside Cache 11



12

Metastability due to GC – Sustaining Effect
Load-spike

High queue length

High GC behavior

Job processing 
slows down

Capacity
degradation 
amplification

Sustaining effect: Contention between arriving traffic and GC consuming resources

• More active objects to 
process during a GC cycle

• Higher memory pressure 
causes more GC cycles

• GC causes application to 
pause and slow down



Metastability due to GC – Timeseries

• Load-spike triggers high queue length and high GC behavior
• Queue continues building up

System Load
GC duration
Queue length

13



Load-shedding: 1st

Metastability due to GC – Timeseries

• Load-spike triggers high queue length and high GC behavior
• Queue continues building up
• Aggressive load-shedding does not lower the GC behavior

2nd 3rd
System Load
GC duration
Queue length

14

30%



Degrees of Vulnerabilities

• System load determines vulnerability
• Tradeoff: Efficiency vs. Vulnerability

Max heap size = 256 MB

--> Higher load

Smaller trigger 
required to cause
metastability

15



Degrees of Vulnerabilities

• System load determines vulnerability
• Tradeoff: Efficiency vs. Vulnerability

• System configs impact vulnerability
• Larger memory à Lower vulnerability

Max heap size = 256 MB Max heap size = 384 MB

Metastable Vulnerable

16

Increase memory size



Lessons

• Detect and react to trigger quickly to avoid metastable failures
• Sustaining effects may not be immediate
• Sustaining effects take time to amplify the overload

• Design systems to eliminate/minimize sustaining effects
• Common case optimizations may cause or exacerbate sustaining effect

àMight not be possible to eliminate sustaining effect entirely
àConsider the slow path, not just the fast path

17



Lessons

• Understand the degree of vulnerability of the system to control risk
• System load and capacity determines vulnerability

àLoad testing can reveal issues
àAdding capacity can lower vulnerability

• System config affects vulnerability
àControl relevant configs to lower vulnerability

18



Lessons

• Recover from metastable failure by breaking the sustaining effect cycle
• Fix the triggers to prevent recurrence
• Negate load spikes by load shedding
• Rollback or halt deployments
• Hot-fix software bugs

• End the overload to break the sustaining effect cycle
• Load-shedding (e.g., admission control, graceful degradation)
• Increase capacity
• Change policy to reduce amplification factors

19



Conclusion

• Metastable failure – permanent overload even after triggers are removed

• They are prevalent and can cause major outages

• Understanding the sustaining effects and the degree of vulnerability in 
systems is critical to prevent metastable failures

• Three open-sourced metastable failure examples
https://github.com/lexiangh/Metastability

20


