
Practically Correct, Just-in-Time
Shell Script Parallelization

github.com/binpash/pashbinpa.sh

OSDI 2022

binpa.sh

Practically Correct, Just-in-Time
Shell Script Parallelization

or how to get from this:

github.com/binpash/pashbinpa.sh

OSDI 2022

binpa.sh

Practically Correct, Just-in-Time
Shell Script Parallelization

or how to get from this: to this:

github.com/binpash/pashbinpa.sh

OSDI 2022

binpa.sh

Joint work with:

Building on work by many others (in alphabetical order):

Nikos VasilakisMichael Greenberg

Achilles Benetopoulos Kostas MamourasShivam HandaLazar Cvetkovic Martin Rinard

Thurston DangTammam Mustafa

Radha Patel

Jan Bielak Dimitris Karnikis

shell

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

… for real

from the 2021 state of the octoverse: https://octoverse.github.com

Why? … well, the shell is great

• Universal Composition
• Composing arbitrary commands using files and pipes

• Allows users to create powerful but succinct scripts

• Unix native
• It is well suited to the Unix abstractions (files, strings, etc)

• Offers great control and management of the file system

• Interactive
• The complete system environment is accessible

• Short commands and flags allows for quick experimentation

An example: Temperature Analysis

• This script computes the max temp in the US for the years 2015-2019

• To do so it:
• Fetches the indexes of temperature data archives

• Downloads the archived temp data

• Extracts the raw data

• Cleans it

• Computes the maximum

• The preprocessing part is taken from the Hadoop book
• Until the gunzip

• The final two lines replace the MapReduce program from Hadoop book
• The MapReduce equivalent in Java is 150 lines of code :’)

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"
done

The shell is great but …

Shell scripts are mostly sequential!*

*Actually they have a ton more issues but we will come to that in the end

The shell is great but …

Shell scripts are mostly sequential!*

Parallelizing requires a lot of manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

• Using parallelization tools (e.g., GNU parallel)

• Rewriting script in parallel languages (e.g. Erlang)

What did we do to deserve this??? :’(

*Actually they have a ton more issues but we will come to that in the end

PaSh

PaSh

Dataflow Model

Shell2Dataflow Dataflow2Shell

Parallelizing

Transformations

No tight coupling: Could work on top of any shell!

Preprocessing Processing

33m58s 10m4sbash

82GB (5y weather data)

PaSh on Temperature Analysis

Hadoop only focuses on this part

This part is not the focus of

traditional parallelization

frameworks but parallelizing it has

the biggest impact

Preprocessing Processing

33m58s 10m4s

pash -w 16

bash

2.52×
combined speedup

for the full program

12.31×
speedup for

processing

2.04×
speedup for

preprocessing

16m39s 49s

82GB (5y weather data)

PaSh on Temperature Analysis

PaSh Insights

Command Specification Framework

grep -v –f pats.txt in.txt

Command

Specifications

grep -v

pats

in

PaSh Insights

Parallelizing

Transformations

Order Aware Dataflow ModelCommand Specification Framework

grep -v –f pats.txt in.txt

Command

Specifications

grep -v

pats

in

✨Transformations proven correct ✨

Read the PaSh papers at EuroSys 21 and ICFP 21 for more!

PaSh -- The static way

That should be OK, right?

That should be OK, right?

Conservative or unsound – Choose one

• The shell is dynamic:
• Current directory

• Environment variables

• Unexpanded strings

• File system

IN=${IN:-$TOP/pg}
mkdir $IN
cd $IN
echo 'Downloading, be patient...'
wget $SOURCE/data/pg.tar.xz
if [$? -ne 0]; then
echo "Download failed!"
exit 1

fi
cat pg.tar.xz | tar -xJ

cd $TOP
OUT=${OUT:-$TOP/output}
mkdir -p "$OUT"
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Conservative or unsound – Choose one

• The shell is dynamic:
• Current directory

• Environment variables

• Unexpanded strings

• File system

• Static parallelization has to choose:
• Sound but conservative

• Unsound and optimistic

IN=${IN:-$TOP/pg}
mkdir $IN
cd $IN
echo 'Downloading, be patient...'
wget $SOURCE/data/pg.tar.xz
if [$? -ne 0]; then
echo "Download failed!"
exit 1

fi
cat pg.tar.xz | tar -xJ

cd $TOP
OUT=${OUT:-$TOP/output}
mkdir -p "$OUT"
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

PaSh-JIT

Just in time parallelization

• PaSh-JIT tries to parallelize as-late-as-possibleTM

• Provides critical information to the compiler:
• State of shell, Variables, Directory, Files

• Not only correct, but also faster!!!

• How?
• By constantly switching between evaluation and parallelization

Just in time parallelization

OUT=${OUT:-$TOP/out}
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in

Just in time parallelization

OUT=${OUT:-$TOP/out}
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in

Just in time parallelization

OUT=/pash/out
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in

Just in time parallelization

OUT=/pash/out
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Expanding

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat /pash/in/in1 |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > /pash/out/in1.out

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat /pash/in/in1 |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > /pash/out/in1.out

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Parallelize?

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
mkfifo f1 f2 f3 f4
cat /pash/in/in1 | split f1 f2 &
... &
sort < f1 > f3 &
sort < f3 > f4 &
sort –m f3 f4 > /pash/out/in1.out
rm f1 f2 f3 f4

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Parallelize?

Success!

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
mkfifo f1 f2 f3 f4
cat /pash/in/in1 | split f1 f2 &
... &
sort < f1 > f3 &
sort < f3 > f4 &
sort –m f3 f4 > /pash/out/in1.out
rm f1 f2 f3 f4

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

PaSh-JIT overview

Script

Instrumented
Script

...
source jit.sh
...

Preprocessor

Parsing

Library

Compilation

Server
JIT Engine

Shell state

- Variables

- Files

- …

User Shell

JIT Engine

JIT Engine

Hides compilation from the perspective of the shell

Compilation Server

• The compilation server reduces latency!
• Doesn’t require initializations and keeps state in memory

• Necessary for feasibility in practice (in tight loops every ms counts)

• Also enables additional optimizations
• Parallelization of independent fragments (e.g., iterations that touch different files)

• Profile-guided optimizations (e.g., configuring parallelization width)

• For more, check out our paper

Evaluation

Evaluation: Correctness

Evaluation: Correctness

Evaluation: Correctness

- 1007 assertions

- 408 tests

- 29k LOC

- Covers all shell behavior

- Many edge cases

Evaluation: POSIX test suite

• Out of the 408 tests
• Bash passes 376 and fails 32 tests

• PaSh-JIT passes 374 and fails 34 tests

• Divergence in these two tests is only in the exit status
• Both return with an error, though different code

Evaluation: POSIX test suite

• Out of the 408 tests
• Bash passes 376 and fails 32 tests

• PaSh-JIT passes 374 and fails 34 tests

• Divergence in these two tests is only in the exit status
• Both return with an error, though different code

• Other shells compared to bash:
Both Bash

and X fail

Bash succeeds

X fails

dash 1 20

ksh 2 22

mksh 1 29

posh 4 52

yash 1 20

Evaluation: POSIX test suite

• Out of the 408 tests
• Bash passes 376 and fails 32 tests

• PaSh-JIT passes 374 and fails 34 tests

• Divergence in these two tests is only in the exit status
• Both return with an error, though different code

• Other shells compared to bash:

• Various shell failures on POSIX tests:

Both Bash

and X fail

Bash succeeds

X fails

dash 1 20

ksh 2 22

mksh 1 29

posh 4 52

yash 1 20

Evaluation: POSIX test suite

• Out of the 408 tests
• Bash passes 376 and fails 32 tests

• PaSh-JIT passes 374 and fails 34 tests

• Divergence in these two tests is only in the exit status
• Both return with an error, though different code

• Other shells compared to bash:

• Various shell failures on POSIX tests:

Both Bash

and X fail

Bash succeeds

X fails

dash 1 20

ksh 2 22

mksh 1 29

posh 4 52

yash 1 20

By following a lightweight shim approach

(instead of reimplementing) we achieve

very high compatibility with bash ✨

Evaluation: Performance

• Evaluating on 82 shell scripts (4 suites and 11 standalone scripts)

Avg speedups: PaSh-JIT (x5.8) – PaSh-AOT (x2.9)

Conclusion

Conclusion

• Shells were angry that we tried to parallelize statically

Conclusion

• Shells were angry that we tried to parallelize statically

• We can make them happy by being dynamic

Conclusion

• Shells were angry that we tried to parallelize statically

• We can make them happy by being dynamic

• Correct

• And fast!

The shell has more problems…

• Error-proneness
• accidentally `rm -rf /` ⚰️

• Hard to learn
• still googling for if-then-else shell syntax

• Redundant recomputation
• we have to use Makefiles etc

• Lack of support for contemporary deployments
• managing a distributed cluster

[1] Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. “Build scripts with Perfect Dependencies.“OOPSLA. 2020.

Recent exceptions: Rattle [1] and Riker [2]

[2] Charlie Curtsinger, and Daniel W. Barowy. “Riker: Always-Correct and Fast Incremental Builds from Simple

Specifications “ATC. 2022.

The JIT part of PaSh-JIT is an enabler

• The JIT structure of PaSh-JIT enables additional analyses/solutions

Script

Instrumented
Script

...
source jit.sh
...

Preprocessor

Parsing

Library

Your analysis

here !!!
JIT Engine

User shell Shell state

- Variables

- Files

- …

Some exciting future directions

• A shell monitor that ensures that safety/security props are not violated

• A fully distributed shell 💣

• An incremental execution shell

• Talk to us if you have ideas!

• Michael and Nikos are hiring!

Practical impact and availability

• PaSh is open source and hosted by the Linux Foundation

• It is virtually indistinguishable from bash (406/408 POSIX tests)

• And requires no modifications/reimplementation

• OSDI artifact badges

• Download it and play binpa.sh github.com/binpash/pash

binpa.sh

