From Dynamic Loading to
Extensible Transformation:
An Infrastructure for Dynamic
Library Transformation

Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye,

Shiyuan Hu, Xu Wu, Wengin Zheng, Wenfeng Zhang, Xinwei Hu

NS

HUAWEI

Huawei Technologies

Background: dynamic library

* Modularity

complex software can be developed, delivered, and distributed as a collection of libraries,
instead of a single binary.

Background: dynamic library

* Modularity

complex software can be developed, delivered, and distributed as a collection of libraries,
instead of a single binary.

* Maintainability

dynamic library can be updated or patched individually without modifying or re-compiling the
entire application.

Background: dynamic library

* Modularity

complex software can be developed, delivered, and distributed as a collection of libraries,
instead of a single binary.

* Maintainability

dynamic library can be updated or patched individually without modifying or re-compiling the
entire application.

e Sharability

dynamic library can be shared among multiple applications, thus avoid duplication in disk or
memory

Background: dynamic library

* Modularity

complex software can be developed, delivered, and distributed as a collection of libraries,
instead of a single binary.

* Maintainability

dynamic library can be updated or patched individually without modifying or re-compiling the
entire application.

e Sharability

dynamic library can be shared among multiple applications, thus avoid duplication in disk or
memory

* Open source friendly

license contamination: open source license requires all statically linked code should also be
open-sourced

Background: dynamic library

* More and more dynamic libraries are shipped by vendors

* More and more dynamic libraries are used by applications

350
300 i
250
200
150
100
50

Qx"l/ 0{5 Q\b‘ A0 Q\Q) 0{\ Qx‘b QXC) Q’LQ Q/L\'

10>70>90>70>70>20> 9

Year

Adi hale’

The number of dynamic libraries included in the
CUDA Toolkit over the past decade

[ropt@192 GeminiGraph-mastorl# 1dd /usr/bin/gtk-launch

linux-vdso.so.1l (Ox00POFffff82920000)
libgtk-3.s5s0.0 => /1ib54/1libgtk-3.s50.0 (Ox0000ffff820e9000)
libgdk-3.s0.0 /1ib54/1ibgdk-3.50.0 (Ox0000ffff81fc7)
libgmodule-2.0.s0.0 /1ib64/1libgmodule-2.0.50.0 (O0x0 ffff81fa6000)
libXinerama.so.l => /lib64/libXinerama.so.l (0x0000ffff81f85000)
libXrandr.so.2 /1ipb64/1libXrandr.so.2 (Ox0000ffff81f64000)
libXext.so0.6 => /1ib6%1/1libXext.so0.6 (0x0000ffff81f33000)
librt.so.1 /1ib64/librt.so.1 (0x0000ffff81f10000)
libpangocairo-1.0.s0.9 => /lib64/libpangocairo-1.0.s50.0 (O0x0000ffff8leef000)
1ibX11l.s0.6 => /1ib64/1ibX1ll.s0.6 (Ox0000ffff81d9b00OO)

- - /1ib64/1ibXi.so0.6 (0x0000ffff81d7a000)
libXcomposite.so.1l /1ib64/1ibXcomposite.so.1l (Ox0000ffff81d59000)
libXdamage.so.1l == /1lib64/libXdamage.so.1l (Ox Offff81d38000)
1libXfixes.so0.3 == /1ip64/1libXfixes.so0.3 (Ox0000ffff81d15000)
libcairo-gobject.so /1ib64/1libcairo-gobject.so.2 PeOFffff81lcf4000)
libcairo.so.2 == /lib54/libcairo.so.2 (0x0000ffff8lbc2)
libgdk_pixbuf-2.0.s0.3 => /1ib64/1libgdk_pixbuf-2.0.s50.0 (0x0000ffff81b81000)
libatk-1.0.s50.0 == /1ib64/1libatk-1.0.s0.0 (Ox0000ffff81b40000)
libatk-bridge-2.0.s0.39 == /lib64/libatk-bridge-2.0.so0 (Ox0000FFfff8lacebO)
libxkbcommon.so.0 == /1ib64/libxkbcommon.so.0 (0x0000ffff81a9b000)
libwayland-cursor.so.? => /lib64/libwayland-cursor.so.0 (0x0000ffff81a77000)
libwayland-egl.so.1l /1lib64/libwayland-egl.so.1l (0x0000ffff81a56000)
libwayland-client.so.3 => /lib64/libwayland-client.so0.0 (Ox0000ffff81a35000)
libepoxy.so0.0 == /1lib54/libepoxy.so.0 (0x0000ffff818de000)
libfribidi.so.0 == /1ib64/1ibfribidi.so.0 (Ox0000ffff818ad0oo)
libgio-2. s0.0 => /1ib64/1ibgio-2.0.s0.0 (Ox0000ffff816a8000)
libm.so.6 => /1ib64/1libm.so.6 (Ox0000ffff815e7000)
libpangoft2-1.0.s0.0 => /1ib64/libpangoft2-1.0.s0.0 (0x0000ffff815b6000)
libpango-1.0.s0.0 /1ib64/1libpango-1.0.s0.0 (Ox0000ffff81555000)
libgobject-2.0.s0.0 => /1ib64/libgobject-2.0.s0.0 (0x0000ffff814d3000)
libglib-2 s0.0 == /lib64/1ibglib-2.0.s50.0 (0x0000ffff81391000)
libharfbuzz.so0.0 == /lib64/libharfbuzz.so.0 (Ox0000ffff8127e000)
libfontconfig.so.1l == /1ib64/libfontconfig.so.1l (0x00 ffff8121d000O)
libfreetype.so.6 => /lib64/libfreetype.so.6 (0x0000ffff8115c000)
libpthread.so.0 == /1ib64/libpthread.so.0 (Ox0000ffff81127000)
libc.so.6 /1ib64/1libc.so.6 (Ox00EOFffff80fblO00O)
/lib/ld-linux-aarch64.so0.1 (Ox00Offff828f2000)

Applications can rely on from tens to hundreds
dynamic libraries

Background: performance overhead

Memory management: each library is
individually mapped into the process’s
address space. Invocation between libraries
touch different pages, incurring TLB miss

TLB 99th percentile | Execution
miss [PC latency (cycle) | time (s)
glibc | 1,231,950 | 1.96 | 318 6.01
iFed 117,782 243 | 232 4.86

A micro-benchmark that simply invokes 100
dynamic libraries, and each library contains only
one function accessing memory.

Performance comparison between glibc and iFed
on x86 machine.

Background: performance overhead

Memory management: each library is
individually mapped into the process’s
address space. Invocation between libraries
touch different pages, incurring TLB miss

TLB 99th percentile | Execution
miss [PC latency (cycle) | time (s)
glibc | 1,231,950 | 1.96 | 318 6.01
iFed 117,782 243 | 232 4.86

A micro-benchmark that simply invokes 100
dynamic libraries, and each library contains only
one function accessing memory.

Performance comparison between glibc and iFed
on x86 machine.

Relocation: more memory access and
executed instructions incur extra branch miss,
cache miss, etc...

print_banner: : : printf@got: :
= printf@plt: f7€835f0 <printf>:
call printf@plt /jmp *printf@got _—»-0Xf7e835f0—" 2

ret
write_file:

; f7e86f0 <write>:
e write write@plt: write@got:

object plt got library

simplified execution flow of relocation

Optimizations: Dynamic Library Concatenation

* Collect the same sections, such .code, from all dynamic libraries and
concatenate them one by one to form a big section.

* This combined section is large enough to fit in hugepages

- f00.50 —>| «<— bar.so — «~— code —»| «—— .data —
:—\] 1 |
.code .data| -- | .code| .data| - ‘ fo_o: bar: ___fgo: bar: -
4K T 4k T4k T 4k T 4K T 4K 2M 2M
Different sections in different libraries Same sections in different libraries are

use small page combined and use hugepage

Optimizations: Dynamic Library Concatenation

Trade off

* Reduced address space layout randomization
Mitigations:
(1) concatenate libraries in random order.
(2) non-continuous Hugepages.
(3) leverage other code randomization techniques at load time

* Reduced library sharing
Mitigations
(1) Only apply to performance critical applications
(2) Multiple forked instances can still share combined libraries
(3) Sharing part of a hugepage

Optimizations: Relocation Branch Elimination

* Rewrite the call instructions to replace their target address with the
address of library functions, instead of using indirect jump

* Eliminate the extra memory access and branch instruction, achieve
similar effect as static linking

text
fool:
call bar@plt

foo2:
call bar@plt

plt
bar@plt

jump *(bar@got)
.got

bar bar@bar.so

_—)

text
fool:

call bar@bar.so

foo2:

call bar@bar.so

Optimizations: Relocation Branch Elimination

Trade off

* Increased loading time
Mitigations:
(1) Little impact on long-running services, such as web server and database
(2) Apply in-memory caching technology to load the transformed image

* Increased binary size
Mitigations
(1) Download on-demand from remote storage
(2) Compresses binary

Optimazations: more

There is a large body of research focusing on load time technology.

_ Who moved my cheese?

ASPLOS 20

out-Agnostic Binary Recomp

Session 2B: Dynamic compilation

Egalito: La‘y . Kent williams-King
. Hidenori Kobayasl}l kwk@bf‘)‘f"“'e‘_ju
David Williamg—K;ng hidenori,kobayashi@ﬁmanl.com Brown University
coorte ugan e
Columbia Frank Spano_ Columbia University
Gral o, .. T .
'» Binary Stirring: Self-randomizing Instruction Addresses of
Legacy x86 Binary Code

CCS’12

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, Zhigiang Lin
Department of Computer Science, The University of Texas at Dallas
800 W. Campbell Rd, Richardson, TX, 75252
{richard.wartell, vishwath.mohan, hamlen, zhigiang.linj@utdallas.edu

jlexr
X Comp? :
a . . On
I oo e Apphcah
v
exY C i
eve\op fo 1 t P v tfok‘:anches\er
| | Un‘wersxw MK N
1 fanches e
Opt : pet umeno nc
. \os
Pasck»:}:; Edm\mrgh . = Le(;f Sizmh
i e
Univ e‘;m\)urg, | 1 Faceboo\(.
mpe\s@ed af PLD\ 2 s =
. HazelW°
o Al Research
Facebook CAUS
Mea\:le\w od@(b.com
Kim

ASLR-Guard: CCS'15
Stopping Address Space Leakage for Code Reuse Attacks

youngyoung Lee, Simon P. Chung,

, and Wenke Lee
e, Georgia Institute of Technology

)
PLDI'20
BlanklIt Library Debloating
Getting What You Want Instead of Cutting What You Don’t

Chris Porter” Girish Mururu*
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, GA, USA Atlanta, GA, USA

porter@gatech.edu girishmururu@gatech.edu
Prithayan Barua Santosh Pande
Georgia Institute of Technology Georgia Institute of Technology

Atlanta, GA, USA Atlanta, GA, USA

prithayan@gatech.edu santosh.pande@cc.gatech.edu

Debloating Software through Piece-Wise Compilation and Loading

Aravind Prakash
Binghamton University
aprakash@binghamton.edu
Lok Yan

Air Force Research Laboratory USENIX Secu rity' 18
lok.yan @ us.af-mil

Anh Quach
Binghamton University
aquachl @binghamton.edu

Problems

* hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

Problems

* hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

* hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream

Problems

* hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

* hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream

* hard to distribute

Multiple distributions to server different productions with various features

Problems

* hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

* hard to maintain
Customized patch with application specific optimizations are hard to be accepted by upstream

* hard to distribute

Multiple distributions to server different productions with various features

* hard to use
Cannot combine different features for different application scenario

Problems

* hard to develop
Require knowledge about the whole loader, introduce ad-hoc and intrusive modifications.

* hard to maint@
Customized patc

upstream

* hard to distri
Multiple distribu

e hard to use
Cannot combine different features for different application scenario

New loader: goals

* Extensibility and Modularity

Various functionality should be organized in a loosely-coupled way instead of a monolithic
implementation

New loader: goals

* Extensibility and Modularity

Various functionality should be organized in a loosely-coupled way instead of a monolithic
implementation

* Flexibility and Customizability

flexibly configured for different trade-off on per-application, customer, or even per-run basis

New loader: goals

* Extensibility and Modularity

Various functionality should be organized in a loosely-coupled way instead of a monolithic
implementation

* Flexibility and Customizability

flexibly configured for different trade-off on per-application, customer, or even per-run basis

* Compatibility and Transparency
Compatible with the existing loader interface and transparent to application

New loader: iFed overview

iFed (infrastructure for flexible and extensible dynamic
library transformation)

@p iFed iFed pass pass
binary binary * 50 confguratlon bmanes confguratlons

2

-->

kernel

pass
manager ‘ pomt' .
(| RN = =

New loader: key technique

app iFed iFed pass pass
binary binary X o0 configuration binaries configurations
l library — meta loader ——__ verification relocation application
Iookup pass pass pass reads
system - entry S S S S
el manager - ‘ e
ELF rmf isolation® ____ memory
k ern eI parser iFe d pass management APP

* Runnable in-memory format
* ELF is for dense storage on disk, a in-memory counterpart is missing
e Abstract around common information and states, such as relocations and symbols
e Collect all information from all libraries for global optimization
* Expose unified interface to upper library transformation

New loader: key technique

app iFed iFed pass pass
binary binary X o configuration binaries configurations

1

>

¥ i | e
\
pass
manager

- - mf iIFed

APP

oneer

kernel

* Pass-based optimization framework
 Library transformation is implemented as separated pass
* Multiple passes form a pipeline
* Passes interact via RIMF

Speedup

Speedup

New |loader: evaluation

We evaluate iFed with a large range of application

1.4
1.2

1
0.8
0.6

1.4
1.2

0.8
0.6

\ S \o N o b 0 5
0 o (30 0@ ¢ gt o0 e «\ ¢° OIS A\ T o PR T SR NP T \C IR |\ TR & AN\ N L G A >
2¢O (0N 0 W7 (07 2 QAR SRR \ P\ SR L P \C R Tl Vi MR\ ™ of

Q © CO\) ¢3Q S A <« OQ C oc’\.g QO(D" (0(’ \.\0 *(,06,(,0
. . . . 15"
Phoronix test suite on ARM physical machine
e (\ 6" e ¢ & e &0 S ® (O \ RSO AP o AR
o W% @3¢ QY el o 36‘ e QAO% (& &P (O oo S\ G o0 X 907 o @
R 00 W 2 s® RAEAL Q@ P xof K o 20
oV o0 &<
15"

Phoronix test suite on x86 virtual machine

Improvement

New |loader: evaluation

evaluate iFed on multiple performance dimensions with a dynamic

social website

(a) Normalized Throughput

10 30 50 70 90 110130150
Concurrent Users

Ratio

b) Normalized Average Response Time
4.5

W

4
5
3
5
2

N

[

1

5 | | | | | | |

10 30 50 70 90 110130150
Concurrent Users

5

0

Dynamic web serving performance

Ratio

(c)

4_

3.5
3
2.5
2
1.5
1

Normalized 99th Percentile Latency

glibc —<—
- iFed —&—

10 30 50 70 90 110130150
Concurrent Users

New loader: open question and discussion

* Loader Functionality
* Memory management
* |solation
* Security enhancement
* Binary rewriting and execution control

e Other linker and loader architecture

* License: Is it reasonable to rely on the type of linking?

Conclusion

* A pass-based infrastructure for extensible, flexible, and modular
transformation on dynamic library

* Two performance optimization passes
* Dynamic Library Concatenation
* Relocation Branch Elimination

Open source communities

OpenHarmony,OpenEuler, OpenGauss, MindSpore

Most active 5.10 employers

By changesets By lines changed
Huawei 1434 8.9% Intel 96976 12.6%

Intel 1297 8.0% Huawei 41049 5.3%

Most active 5.8 employers
By changesets By lines changed

Intel 1939 11.9% Huawei 293365 27.8%
Huawei 1399 8.6% Intel 93213 8.8%

https://lwn.net/Articles/839772/

Huawei is one of the top contributor in Linux community

OpenHarmony™ OpenHarmony

https://www.openharmony.cn/

OpenHarmony is an open-source project incubated and operated by the
OpenAtom Foundation. It is an open-source operating system with a framework
and platform applicable to smart devices in all scenarios of a fully-connected
world. It aims to promote the development of the Internet of Everything (IoE).

é‘. openEuler
>

https://openeuler.org/en

As an open community, openEuler works with global developers to build an open, diverse, and
architecture-inclusive software ecosystem that supports multiple processor architectures and
covers a full range of digital facilities. openEuler is committed to supercharging enterprise
digital infrastructure and boosting the application ecosystem.

> openGauss 5&23 (&
v https://opengauss.org/en/ 1°9k 222k

openGauss is an open source relational database management system that is released with
the Mulan PSL v2. with the kernel built on Huawei's years of experience in the database field
and continuously provides competitive features tailored to enterprise-grade scenarios.

626.5K+ 18.2K+

Total

fotal Starred

Downloads

_IS MindSpore

https://www.mindspore.cn/en

MindSpore is a deep learning framework in all scenarios, aiming to achieve easy development,
efficient execution, and all-scenario coverage.

