Imperial College "fg LSDS

London

Large-Scale Data & Systems Group

CAP-VMs: Capability-Based Isolation
and Sharing in the Cloud

ARTIFACT ARTIFACT
EVALUATED EVALUATED

AVAILABLE

Vasily A. Sartakov
Imperial College London

http://Isds.doc.ic.ac.uk
<v.sartakov@imperial.ac.uk>

N
SN
C ,
- Joint work with Lluis Vilanoval, David Eyers?, Takahiro Shinagawas3, Peter Pietzuch

% UK Researcl'.\ Imperial College London?, University of Otago?, The University of Tokyo3
and Innovation USENIX OSDI — July 2022

Clouds: Isolation vs. Sharing

| Storage | | | Analytics |
_ i service | | service |
Cloud services must be isolated (Redis) | | (Python) |

from each other and the cloud stack o
ala

Services must share data efficiently
by crossing isolation boundaries

Hardware

VMs: Strong, Heavyweight Isolation

VM
dst

s

+ Strong isolation guarantees

+ Small(ish) trusted computing base (TCB)
— Only consisting of hypervisor

net

- Network communication for sharing > TCP/IP L-Z2=-2Z__Z_. | eetatheaiies
— Requires data serialisation and copying

- Expensive transitions between services w
— Hypercall = 50 x syscall S 7

Hardware

Containers: Weak, Lightweight Isolation

| Storage | i“-A-r;e-ll-y-t-ic-:;“i
+ Lightweight OS namespace isolation ol i i container i
+ Efficient IPC mechanisms s | b i Ldst]

= Large TCB due to shared OS kernel

— Shared kernel has much unnecessary functionality

- Challenge: efficient data sharing with small TCB Hardware

VMs & Containers: The MMU Tax

Memory Management Unit (MMU) is privileged entity
— Intermediary (kernel) always involved in IPC - Shared TCB, syscalls/hypercalls

MMU shares data at page granularity
— Sharing may expose extra data

Can we use another technology for isolation and sharing?
- CHERI: isolation at byte granularity, low dependency on the kernel

CHERI Capabilities

Fat pointers protected by hardware:
— Dbase + length, cursor
— permission, tag

— byte-granularity” 63 0

.. |length

perms Iotype bounds

Fine-grained isolation address N
Limited dependency on OS kernel
Available: Arm CHERI Morello Boards (Armv8)

base

Capabilities can be created only from capabilities
— Using cap-aware instructions, but not the intermediary

Challenges for Cloud Stacks with
Hardware Capabilities

What would a cloud stack look like if hardware provided efficient

mechanisms to share arbitrary-sized memory regions between otherwise
isolated entities?

Challenges:

C1. Support capability-unaware software
C2. Provide small-TCB OS functionality

C3. Enable efficient capability-based IPC interfaces

cVM: Intra-Process VM-like Abstraction

1. Support cap-unaware software

P :'.-'-'-'-'-'-'-'-'-'-'-'I :
- Isolated execution of native applications X o X
' | Prog B2 |: | B3 Prog ||
S — | - 1
2. Small shared TCB | 2t
: ibOS |1 |1
—> Private namespaces by library OSs | S 1Nt
cVM
3. Cap-based IPC interfaces L
CP_File: efficient data sharing Host OS
CP_Call: remote code invocation
M | Isolation

C1. Isolation/Sharing for Legacy Cloud
Apps?

CHERI:
Native ABI: cap-unaware code
Pure-capability ABI: requires porting
Hybrid-capability ABI: native + cap-aware code

/] A
Fine-grained compartmentalisation: ‘£§
— Cap-unaware instructions constrained by default caps § 1d/sd/jr
— Hybrid code can use capability-aware instructions ° Native
ER code
"g ' 1d.cap

- Can be used for isolation and IPC primitives

Support for Native Software

Goals:
— POSIX environment
— Cloud deployment model (e.g. Docker or VMs)

Program/lib | Dependencies (.so libs)

LibC(musl)
—> Service for cVM shipped as disk image —
— Native cap-unaware PIE binaries cVM
— Compatibility: C standard library (musl libc) - Intravisor

Kernel

= Intravisor allocates cVM, loads Init and disk

10

C2. Small-TCB OS Functionality

Goals: ..

— Necessary OS components N T —

Pl Program/lib Dependencies (.so libs) | :

— Small attack surface | : 'y

! _ LibC(musl) _ | |

A syscalls via CInvoke

. | storage VNS /dev/cp |

—> Private LibraryOSs provide OS functionality ' | nstwork 1 Librayos [GBE__!| !

> Intravisor provides time/network/disk I/0 =1 hostealls vid CInveke ~ "~~~
- Nested isolation layers S &, Intravisor

11

C3. IPC Interfaces Using Capabilities

cVM
Data sharing primitives efficient if: Program mlbos
« Non-shared and without intermediary on critical path readhC—P—‘f-\"-e--- -}
« Well-known API (POSIX) ol i — ~—
« Usable by cap-unaware code , native code | | oo duee cod |
- ' libog/ cVM
Program ' ; ~
B o Toroar 00]
A
o
;_syscalls

Cp_File — read/write remote memory at byte granularity using caps
cP_call - call function in cVM

cP_stream — Stream-oriented IPC interface

12

CAP-VM Prototype

Platforms:
— CHERI RISC-V64, QEMU, AWS F1 (agfi-026d853003d6¢c433a)

— CheriBSD (host), LKL v4.17 with musl v1.2.1 (cVMs)
— SiFive HiFive Unmatched (No CHERI, but multi-core)

Application and services (in the paper):
— Redis, data-processing utilities, Python3 with modules, SQLite benchmarks

— Multi-tier microservice (NGINX with API gate, Redis (SiFive only))

Evaluation question: Performance of cVM IPC primitives?

— Basic: memcpy, mmap+memcpy
— CVMs: CP_File, CP_Stream

— FreeBSD: pipe, Unix, TCP sockets

13

w w S S Ul
o u o U o

Performance (MB/s)
S &

[y
ul

Comparing with IPC Mechanisms

1.5

2
Data size, MB

2.5

A

3.5

CP_FILE VS. memcpy:
- 6% slower

CP_Stream faster (1.2 MB+)
— Privileged execution

Unix, TCP, mmap+memcpy:

— Less than 2.4-3.6 MB/s
Processes: 1.6 MB/s max

14

Conclusions

Small-TCB isolation with efficient sharing in clouds hard:
— Containers - large shared TCB with relatively fast IPC mechanisms
— VMs - small TCB with slow IPC mechanisms

CAP-VMs provide VM-like abstraction using hardware capabilities:
— Secure isolation at byte granularity using memory capabilities
— Controlled shared TCB by private library OS
— Efficient data sharing using capability-based IPC primitives

Source code: http://github.com/Isds/intravisor

Thank You — Any Questions?

' Vasily A. Sartak
'@ LSDS asily A. Sartakov

v.sartakov@imperial.ac.uk

Large-Scale Data & Systems Group

15

