
Automatic Reliability Testing for 
Cluster Management Controllers

Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan, 
Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, Tianyin Xu

0



Kubernetes:
Manage applications, services,

networking, storage, etc.

Cluster management is realized by controllers

1

Volume 
controller

Container 
controller

Controller

Controller

Cassandra 
controller

Controller

Thousands of controllers being developed
by the Kubernetes community



Cluster management is realized by controllers

2

Controller

Controller

Cassandra 
controller

Controller

Volume 
controller

Container 
controller

Thousands of controllers being developed
by the Kubernetes community



Controllers implement state reconciliation

3

ControllerCluster 
state

Objects representing 
containers, volumes, 
nodes, applications…

Goal: Reconcile the current state
to the desired state



Container

Volume

Current

4

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

Desired

Controllers implement state reconciliation



Controller reliability is critical, but challenging!

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never 
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

This bug was detected by 
our tool and has been 
fixed by the developers. 5



Contributions

• Sieve: automatic reliability testing for Kubernetes controllers
• Key idea: Perturbing the controller’s view of cluster state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably
• Open sourced at https://github.com/sieve-project/sieve

• Detected 46 serious bugs in 10 popular Kubernetes controllers
• Severe consequences: System outage, data loss, security issues, etc.
• 35 confirmed and 22 fixed

6

https://github.com/sieve-project/sieve


Challenges of testing controllers

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never 
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

Non-crashing symptom

7

Sophisticated 
triggering 
condition

Different implementations
and diverse functionality



Perturb the controller’s view of cluster state

8

Reference run Perturbed run

Common,
transient 

faults

A controller makes reconciliation 
decisions based on its view of the 
current cluster state.

Desired state

Initial state
Cluster state: Objects in

Every object 
creation/update/deletion 

advances the state



9

Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
Cluster state: Objects in

Flag buggy behavior with differential oracles

Differential oracles: 
Detecting liveness and safety 

violations without knowing the 
semantic of the state objects



10

Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
Cluster state: Objects in

Flag buggy behavior with differential oracles

Liveness Property
A controller should eventually 

achieve the desired state

Compare the end states



11

Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
Cluster state: Objects in

Flag buggy behavior with differential oracles

Safety Property
A controller should never delete

user data unless requested

Compare the state updates
(e.g., # volume deletions)



Interposition around state-centric interface

12

Controller
Get(key ObjectKey,...)

Update(obj Object,...)

• State-centric interface is used to read/write state objects
• Automatic interposition around cluster state transitions
• Allow Sieve to test unmodified controllers

Instrument



Detect diverse controller bugs

13

• Employ three perturbation patterns

• Exhaustively test all bug-triggering perturbations
• Systematically find all the targeted bugs
• Inject faults with different timings

• Prune out ineffective perturbations to be efficient
• Not every perturbation leads to bugs



{
Create(...) //S1->S2
...
Update(...) //S2->S3

}

14

S1

S2

S3

S4

S5

S1

S2

The intermediate-state pattern

Crash

Reference run Perturbed run

No atomicity guarantee!

Reconcile
cycle

Start a new reconcile cycle 
from S2A controller should 

correctly handle any 
intermediate state.

Intermediate state

Intermediate state



An intermediate-state bug detected by Sieve

15

switch phase {
case “Ongoing”:

if ContainerNotFound(container) {
return Error(“Container not found”)

}
...
Delete(container)
...
UpdatePhase(“Finalizing”) // phase <- “Finalizing”
...

case “Finalizing”:
...
Delete(volume)
...
UpdatePhase(“Done”) // phase <- “Done”

}
// https://github.com/Orange-OpenSource/casskop

Uses phase to drive the reconciliation
Reference run

…
…



16

switch phase {
case “Ongoing”:

if ContainerNotFound(container) {
return Error(“Container not found”)

}
...
Delete(container)
...
UpdatePhase(“Finalizing”) // phase <- “Finalizing”
...

case “Finalizing”:
...
Delete(volume)
...
UpdatePhase(“Done”) // phase <- “Done”

}
// https://github.com/Orange-OpenSource/casskop

Always returns here…

Never executes this…

Perturbed run

An intermediate-state bug detected by Sieve

Crash…
…



17

S1

S2

S3

S4

S5

S1

S2

S3

S1

The stale-state pattern

1. Inject delay to make a 
backup cache stale

2. Reconnect the controller 
to the stale cache

A controller should correctly 
handle staleness caused by 
asynchrony and caching.

Reference run Perturbed run

S1 replayed in the 
controller’s view



18

S1

S2

S3

S4

S5

S1

S2

S4

S5

The unobserved-state pattern

Inject delay to make the 
controller miss a state

A controller should function 
correctly without observing 
every state.

Reference run Perturbed run

S3 missed in the 
controller’s view



Exhaustive perturbation for each pattern

19

• Key principle: Inject faults at each execution point

• Run many different tests, each performing a different perturbation
• Intermediate-state: Crash after every state update
• Stale-state: Replay every stale state
• Unobserved-state: Make the controller miss every state



Prune ineffective perturbations for efficiency

20

Key principle: Prune out perturbations that cannot affect 
a controller’s behavior
• Intermediate-state: Prune out crashes that 

do not result in new intermediate states

• Stale- and unobserved-state: Avoid perturbing
the state if observing the state does not causally 
lead to any controller effect
• Reason about causality from state to effect

// Reconcile cycle
...
Create(...)
...
Update(...)
...
Delete(...)
...
Update(...)
...

Delete a 
non-existing 

object



21

Sieve end-to-end workflow
Input

Controller

Build & 
deploy scripts

Test 
workloads

Output

Test results for 
each perturbation

1. Produce a reference run 3. Produce a perturbed 
run for each test plan

2. Generate test plans

4. Flag bugs with differential oracles

A test plan describes a 
concrete perturbation



Evaluation
• Applied Sieve to 10 popular Kubernetes controllers

• Can Sieve effectively find new bugs in real-world controllers?
• Sieve found 46 bugs in 10 controllers

• Does Sieve do so efficiently?
• Sieve pruned out 46% - 99% of perturbations
• Sieve tested each controller with a nightly run

• Are Sieve’s testing results trustworthy?
• Sieve had a low false positive rate of 3.5%

22



Finding new bugs
Controller Intermediate 

state bugs
Stale 

state bugs
Unobserved 

state bugs
Indirect 

bugs
Total

cass-operator 2 1 0 0 3
cassandra-operator 0 2 1 2 5
casskop 1 2 1 0 4
elastic-operator 0 2 0 0 2
mongodb-operator 2 3 1 3 9
nifikop 2 0 0 1 3
rabbitmq-operator 1 2 1 0 4
xtradb-operator 3 3 1 0 7
yugabyte-operator 0 2 1 2 5
zookeeper-operator 0 2 1 1 4
Total 11 19 7 9 46

23

35 confirmed; 22 fixed



Conclusion

• Controller reliability is critical but challenging!

• Sieve: automatic reliability testing for Kubernetes controllers
• Key idea: Perturbing the controller’s view of the cluster state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably

• Open sourced at https://github.com/sieve-project/sieve
• Test your controller with Sieve!

24

https://github.com/sieve-project/sieve

