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Kubernetes:
Manage applications, services,

networking, storage, etc.

Cluster management is realized by controllers
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Controllers implement state reconciliation
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ControllerCluster 
state

Objects representing 
containers, volumes, 
nodes, applications…

Goal: Reconcile the current state
to the desired state



Container

Volume

Current
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Cassandra
Controller

Delete(container)
...
Delete(volume)
...

Desired

Controllers implement state reconciliation



Controller reliability is critical, but challenging!

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never 
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

This bug was detected by 
our tool and has been 
fixed by the developers. 5



Contributions

• Sieve: automatic reliability testing for Kubernetes controllers
• Key idea: Perturbing the controller’s view of cluster state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably
• Open sourced at https://github.com/sieve-project/sieve

• Detected 46 serious bugs in 10 popular Kubernetes controllers
• Severe consequences: System outage, data loss, security issues, etc.
• 35 confirmed and 22 fixed
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https://github.com/sieve-project/sieve


Challenges of testing controllers

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never 
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

Non-crashing symptom
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Sophisticated 
triggering 
condition

Different implementations
and diverse functionality



Perturb the controller’s view of cluster state
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Reference run Perturbed run

Common,
transient 

faults

A controller makes reconciliation 
decisions based on its view of the 
current cluster state.

Desired state

Initial state
Cluster state: Objects in

Every object 
creation/update/deletion 

advances the state
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Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
Cluster state: Objects in

Flag buggy behavior with differential oracles

Differential oracles: 
Detecting liveness and safety 

violations without knowing the 
semantic of the state objects
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Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
Cluster state: Objects in

Flag buggy behavior with differential oracles

Liveness Property
A controller should eventually 

achieve the desired state

Compare the end states
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Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
Cluster state: Objects in

Flag buggy behavior with differential oracles

Safety Property
A controller should never delete

user data unless requested

Compare the state updates
(e.g., # volume deletions)



Interposition around state-centric interface
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Controller
Get(key ObjectKey,...)

Update(obj Object,...)

• State-centric interface is used to read/write state objects
• Automatic interposition around cluster state transitions
• Allow Sieve to test unmodified controllers

Instrument



Detect diverse controller bugs

13

• Employ three perturbation patterns

• Exhaustively test all bug-triggering perturbations
• Systematically find all the targeted bugs
• Inject faults with different timings

• Prune out ineffective perturbations to be efficient
• Not every perturbation leads to bugs



{
Create(...) //S1->S2
...
Update(...) //S2->S3

}
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S1

S2

S3

S4

S5

S1

S2

The intermediate-state pattern

Crash

Reference run Perturbed run

No atomicity guarantee!

Reconcile
cycle

Start a new reconcile cycle 
from S2A controller should 

correctly handle any 
intermediate state.

Intermediate state

Intermediate state



An intermediate-state bug detected by Sieve
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switch phase {
case “Ongoing”:

if ContainerNotFound(container) {
return Error(“Container not found”)

}
...
Delete(container)
...
UpdatePhase(“Finalizing”) // phase <- “Finalizing”
...

case “Finalizing”:
...
Delete(volume)
...
UpdatePhase(“Done”) // phase <- “Done”

}
// https://github.com/Orange-OpenSource/casskop

Uses phase to drive the reconciliation
Reference run

…
…
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switch phase {
case “Ongoing”:

if ContainerNotFound(container) {
return Error(“Container not found”)

}
...
Delete(container)
...
UpdatePhase(“Finalizing”) // phase <- “Finalizing”
...

case “Finalizing”:
...
Delete(volume)
...
UpdatePhase(“Done”) // phase <- “Done”

}
// https://github.com/Orange-OpenSource/casskop

Always returns here…

Never executes this…

Perturbed run

An intermediate-state bug detected by Sieve

Crash…
…
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S1

S2

S3

S4

S5

S1

S2

S3

S1

The stale-state pattern

1. Inject delay to make a 
backup cache stale

2. Reconnect the controller 
to the stale cache

A controller should correctly 
handle staleness caused by 
asynchrony and caching.

Reference run Perturbed run

S1 replayed in the 
controller’s view
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S1

S2

S3

S4

S5

S1

S2

S4

S5

The unobserved-state pattern

Inject delay to make the 
controller miss a state

A controller should function 
correctly without observing 
every state.

Reference run Perturbed run

S3 missed in the 
controller’s view



Exhaustive perturbation for each pattern
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• Key principle: Inject faults at each execution point

• Run many different tests, each performing a different perturbation
• Intermediate-state: Crash after every state update
• Stale-state: Replay every stale state
• Unobserved-state: Make the controller miss every state



Prune ineffective perturbations for efficiency
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Key principle: Prune out perturbations that cannot affect 
a controller’s behavior
• Intermediate-state: Prune out crashes that 

do not result in new intermediate states

• Stale- and unobserved-state: Avoid perturbing
the state if observing the state does not causally 
lead to any controller effect
• Reason about causality from state to effect

// Reconcile cycle
...
Create(...)
...
Update(...)
...
Delete(...)
...
Update(...)
...

Delete a 
non-existing 

object
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Sieve end-to-end workflow
Input

Controller

Build & 
deploy scripts

Test 
workloads

Output

Test results for 
each perturbation

1. Produce a reference run 3. Produce a perturbed 
run for each test plan

2. Generate test plans

4. Flag bugs with differential oracles

A test plan describes a 
concrete perturbation



Evaluation
• Applied Sieve to 10 popular Kubernetes controllers

• Can Sieve effectively find new bugs in real-world controllers?
• Sieve found 46 bugs in 10 controllers

• Does Sieve do so efficiently?
• Sieve pruned out 46% - 99% of perturbations
• Sieve tested each controller with a nightly run

• Are Sieve’s testing results trustworthy?
• Sieve had a low false positive rate of 3.5%
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Finding new bugs
Controller Intermediate 

state bugs
Stale 

state bugs
Unobserved 

state bugs
Indirect 

bugs
Total

cass-operator 2 1 0 0 3
cassandra-operator 0 2 1 2 5
casskop 1 2 1 0 4
elastic-operator 0 2 0 0 2
mongodb-operator 2 3 1 3 9
nifikop 2 0 0 1 3
rabbitmq-operator 1 2 1 0 4
xtradb-operator 3 3 1 0 7
yugabyte-operator 0 2 1 2 5
zookeeper-operator 0 2 1 1 4
Total 11 19 7 9 46
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35 confirmed; 22 fixed



Conclusion

• Controller reliability is critical but challenging!

• Sieve: automatic reliability testing for Kubernetes controllers
• Key idea: Perturbing the controller’s view of the cluster state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably

• Open sourced at https://github.com/sieve-project/sieve
• Test your controller with Sieve!
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https://github.com/sieve-project/sieve

