Automatic Reliability Testing for
Cluster Management Controllers

Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,
Ramnatthan Alagappan Michael Gasch, Lalith Suresh, Tianyin Xu

ILLINOIS & vmware

AAAAAAAAAAAAAAA

Cluster management is realized by controllers

L »

)
.t Volume] Cocsan dra\ % HERSE @

controller cassandra ' ceph

hadaap
Container] [[[Sp QrK kCIkal
controller Controller]4— E
redls

Rabbit
lKZOOkeeper elastlcsearch

[[[Controller [[[Controller]ji N
\ \ mongoDB

PostgreSQL Tensor O PyTO rC h

controller

Thousands of controllers being developed
by the Kubernetes community

Cluster management is realized by controllers

N\ Twitter joins the rest of the world
[Volume] [[[2 — moves to Kubernetes

Cassandra
controller

)
Container -
controller Controller]4—
)
)
{[[Controller [[[Controller]ji

Thousands of controllers being developed
by the Kubernetes community

controller

Controllers implement state reconciliation

Letcd
4) - %

Cluster <4+—— | Controller
state

. y ~—
A Goal: Reconcile the current state

r A to the desired state
Objects representing

containers, volumes,
nodes, applications...

Controllers implement state reconciliation

\ —

Current

Container

Cassandrs
Volume <4—» | Controller
.
J :
Delete(container)
Delete(volume)
\

Controller reliability is critical, but challenging!

Container

Volume

Current

f %

Cassandrs
Controller

.

Crash Delete(container)
and —»
Restart elete(volume) Never
executed

This bug was detected by

our tool and has been
fixed by the developers.

ARTIFACT ARTIFACT ARTIFACT

EVALUATED EVALUATED EVALUATED

C O n t ri b u t i o n s AVAILABLE REPRODUCED

» Sieve: automatic reliability testing for Kubernetes controllers
« Key idea: Perturbing the controller’s view of cluster state
« Usability: Testing unmodified controllers
* Reproducibility: Reproducing detected bugs reliably
* Open sourced at https://github.com/sieve-project/sieve

 Detected 46 serious bugs in 10 popular Kubernetes controllers
« Severe consequences: System outage, data loss, security issues, etc.
35 confirmed and 22 fixed

https://github.com/sieve-project/sieve

Challenges of testing controllers

Different implementations
and diverse functionality

Non-crashing symptom

Sophisticated
triggering
condition

Perturb the controller’s view of cluster state

Reference run Perturbed run

Cluster state: Objects in £3etcd

Initial state Every object
creation/update/deletion —

advances the state

A controller makes reconciliation Common,
aemmngil dccisions based on its view of the transient
current cluster state. faults

Desired state

v v

Flag buggy behavior with differential oracles

Reference run

Initial state

Desired state

\4

(5

Perturbed run

Cluster state: Objects in £3etcd

Differential oracles:
Detecting liveness and safety
violations without knowing the
semantic of the state objects

O

~—————
)

~—————

Common,
transient
faults

Flag buggy behavior with differential oracles

Reference run Perturbed run

Cluster state: Objects in £3etcd
Initial state E|

Common,
— transient
— Liveness Property faults
‘ A controller should eventually

achieve the desired state

Desired state g— Compare the end states
\ 4

10

Flag buggy behavior with differential oracles

Reference run Perturbed run

Cluster state: Objects in £3etcd
Initial state E|

’ ‘ Safety Property

\ , A controller should never delete

R user data unless requested Common,

— > Compare the state updates < transient
(e.g., # volume deletions) faults

Desired state _
v—~ M

11

Interposition around state-centric interface

_Qeted O Instrument \
—T Controller
_ j EUpdate(obj Object,...) : L)

» State-centric interface is used to read/write state objects
« Automatic interposition around cluster state transitions
 Allow Sieve to test unmodified controllers

Detect diverse controller bugs

 Employ three perturbation patterns

- Exhaustively test all bug-triggering perturbations
 Systematically find all the targeted bugs
* Inject faults with different timings

* Prune out ineffective perturbations to be efficient
 Not every perturbation leads to bugs

The intermediate-state pattern

Reference run

Intermediate state ~

Perturbed run

No atomicity guarantee! ﬁ

Intermediate state

A

Reconcile
cycle

{

Create(...) //S1->S2

- Crash
Update(...) //S2->S3

A controller should
correctly handle any

intermediate state.

S1
S2

A?

Start a new reconcile cycle
from S2

14

An intermediate-state bug detected by Sieve

Reference run

-

S
>

cassandra

>

cassandra

Aee

(f(

.

——

cassandra

N
N
N—

switch w Uses phase to drive the reconciliation
case “Ongoing”:

if ContainerNotFound(container) {
return Error(“Container not found”)

}

béiete(container)

OEAatePhase(“Finalizing”) // phase <- “Finalizing”
case.;éinalizing”:

6éiete(volume)

UpdatePhase(“Done”) // phase <- “Done”
}

// https://github.com/Orange-OpenSource/casskop 15

An intermediate-state bug detected by Sieve

Perturbed run

switch phase {
- ~ Case “Ongoing”: Always returns here...
¥ | if ContainerNotFound(container) {
cassandra |) cassandra return Error(“Container not found”)
}
N~ ~— .
\— — Delete(container)

Crash

UpdatePhase(“Finalizing”) // phase <- “Finalizing”

case “Finalizing”:

—/».,@% Delete(volume) Never executes this...

cassandra

UpdatePhase(“Done”) // phase <- “Done”

N
N
N—

(e

_)

v // https://github.com/Orange-OpenSource/casskop 16

The stale-state pattern

Reference run

Perturbed run

A controller should correctly

handle staleness caused by
asynchrony and caching.

1. Inject delay to make a
backup cache stale

2. Reconnect the controller
to the stale cache

S1 replayed in the
controller’s view

17

The unobserved-state pattern

Reference run Perturbed run

A controller should function

correctly without observing
every state.

—————————

S3 Inject delay to make the | | i 53 missed in the
= controller miss a state | ‘--------- ' controller’s view
S4 S4
| S5 S5

Exhaustive perturbation for each pattern

» Key principle: Inject faults at each execution point

« Run many different tests, each performing a different perturbation
 Intermediate-state: Crash after every state update
- Stale-state: Replay every stale state
« Unobserved-state: Make the controller miss every state

Prune ineffective perturbations for efficiency

Key principle: Prune out perturbations that cannot affect
a controller’s behavior

// Reconcile cycle
 Intermediate-state: Prune out crashes that

do not result in new intermediate states Creatg(...)

- Stale- and unobserved-state: Avoid perturbing Urdatg(.-.) Delete a
the state if observing the state does not causally Delete(...) €— non-existing
lead to any controller effect o object

« Reason about causality from state to effect Updatlel(o)

Sieve end-to-end workflow

Input

[Controller]

|

Build &
deploy scripts

]

|

Test
workloads

]

<

1. Produce a reference run

]@

2. Generate test plans

A test plan describes a
concrete perturbation

v

4. Flag bugs with differential oracles

3. Produce a perturbed |
run for each test plan

Output

¥ —
X —

Test results for
each perturbation

Evaluation

 Applied Sieve to 10 popular Kubernetes controllers

 Can Sieve effectively find new bugs in real-world controllers?
» Sieve found 46 bugs in 10 controllers

 Does Sieve do so efficiently?
* Sieve pruned out 46% - 99% of perturbations
« Sieve tested each controller with a nightly run

* Are Sieve’s testing results trustworthy?
« Sieve had a low false positive rate of 3.5%

Finding newbugs & & & 35 confirmed; 22 fixed
Controller Intermediate Stale Unobserved | Indirect
state bugs state bugs state bugs bugs

cass-operator 2 1 o o 3
cassandra-operator 0 2 1 2 5
casskop 1 2 1 0 4
elastic-operator 0 2 o) 0 2
mongodb-operator 2 3 1 3 9
nifikop 2 0 o) 1 3
rabbitmq-operator 1 2 1 0 4
xtradb-operator 3 3 1 o) 7
yugabyte-operator 0 2 1 2 5
zookeeper-operator 0 2 1 1 4
Total 11 19 ~ 9 46

ARTIFACT ARTIFACT ARTIFACT

EVALUATED EVALUATED EVALUATED

Conclusion

 Controller reliability is critical but challenging!

» Sieve: automatic reliability testing for Kubernetes controllers
« Key idea: Perturbing the controller’s view of the cluster state
« Usability: Testing unmodified controllers
* Reproducibility: Reproducing detected bugs reliably

* Open sourced at https://github.com/sieve-project/sieve
 Test your controller with Sieve!

N\

C)

Gitz!:lub

https://github.com/sieve-project/sieve

