Shortstack:

ARTIFACT
EVALUATED

usenix
ASSOCIATION

ARTIFACT
EVALUATED

usenix
' ASSOCIATION

ARTIFACT
EVALUATED

usenix
ASSOCIATION

AVAILABLE

Distributed, Fault-tolerant, Oblivious Data Access

Cornell University.

(First two authors contributed equally)

Trusted

Oblivious Data Access

Untrusted

Key-Value Store

Trusted

Oblivious Data Access

Untrusted

Key-Value Store

B[416

715

r
>
.

o
ﬂ c16
.,

2Ce

Trusted

Oblivious Data Access

ot

Untrusted

Key-Value Store

B[416

715

r
>
.

o
ﬂ c16
.,

2Ce

Oblivious Data Access

Untrusted

Qt Key-Value Store
Trusted
(B[40

oo N =
[ﬂc16
o gl =

2Ce

™ |

41b | [75 | | c16 | | 2ce

Output
Access distribution

Oblivious Data Access

Input Untrusted
Access distribution 3 Key-Value Store

B[41

715

o
ﬂ c16
.,

Trusted

m\ . . ¢
A |

Output
Access distribution

41b | [75 | | c16 | | 2ce

Oblivious Data Access

Input Untrusted
Access distribution 3 Key-Value Store

B[41

715

o
ﬂ c16
.,

Trusted

m\ . . ¢
<4

Output
Access distribution

41b | [75 | | c16 | | 2ce

Encryption is not enough. Need to hide access patterns

Oblivious Data Access

Input Untrusted
Access distribution 3 Key-Value Store

B[41

715

o
ﬂ c16
.,

Trusted

m\ . . ¢
<4

Output
Access distribution

41b | [75 | | c16 | | 2ce

Encryption is not enough. Need to hide access patterns

Oblivious Data Access: Output distribution independent of input distribution

Existing Oblivious Data Access Techniques

Untrusted | Key-Value Store

Trusted

41b
715

[2ce

Qg
Input
Distribution -_-_. Output

a C Distribution A41b| | 75 | | c16| | 2ce

N - 2 - 2 - 2 - 2

Existing Oblivious Data Access Techniques

Untrusted | Key-Value Store

Trusted

[2Ce

Qg
Input
Distribution -_-_. Output

a C Distribution A41b| | 75 | | c16| | 2ce

41b
715

N - 2 - 2 - 2 - 2

Existing Oblivious Data Access Techniques

Untrusted | Key-Value Store

Trusted
(B[41p
__cient B[
[ﬂ 2Ce

Qg
Input
Distribution -_-_. Output

Distri ion
a C stributio 41b | | 75 | | c16 | | 2ce

Existing techniques “flatten” input access distribution into uniform output distribution

Existing Oblivious Data Access Techniques

Untrusted | Key-Value Store

Trusted
(B[41b
__cient B[
[ﬂ 2Ce

Qg
Input
Distribution -_-_. Output

Distri ion
a C stributio 41b | | 75 | | c16 | | 2ce

Existing techniques “flatten” input access distribution into uniform output distribution

ORAM
Bandwidth Overhead Large O(log n)
Adversarial Model Active

(Can inject queries)

Existing Oblivious Data Access Techniques

Untrusted | Key-Value Store

Trusted
(B[410
ol S S e
[ﬂ 2ce
QE
Input
Distribution -_-_. Output
3 C Distribution

41b | | 7t5 | [c16 | | 2ce

Existing techniques “flatten” input access distribution into uniform output distribution

ORAM Pancake
Bandwidth Overhead Large O(log n) Constant (3x)
Adversarial Model Active Honest-but-curious

(Can inject queries) (Does not inject queries)

Existing Oblivious Data Access Techniques

Untrusted | Key-Value Store

Trusted >

(B[41p
ol Bl
Proxy —[«—+ | B cie
[ﬂ 2ce

Qg

Input
Distribution Output

Distribution

41b c16 | | 2ce

Existing techniques “flatten” input access distribution into uniform output distribution

All existing oblivious data access techniques use centralized (stateful) proxy

This work

This work

Challenges with Centralized Oblivious Data Access Systems

1. Insecure or unavailable during failures
2. Scalability bottleneck

This work

Challenges with Centralized Oblivious Data Access Systems
1. Insecure or unavailable during failures
2. Scalability bottleneck

Design of Shortstack:
Distributed, Fault-tolerant, Oblivious Data Access System

This work

Challenges with Centralized Oblivious Data Access Systems
1. Insecure or unavailable during failures
2. Scalability bottleneck

Design of Shortstack:
Distributed, Fault-tolerant, Oblivious Data Access System

Security model:
Enables formal study of Distributed, Fault-tolerant, Oblivious Data Access systems

This work

Challenges with Centralized Oblivious Data Access Systems

1. Insecure or unavailable during failures
2. Scalability bottleneck

Trusted

Pancake overview

o N
o g

Proxy

Untrusted

Key-Value Store

Pancake overview

Three important functionalities:
 Replica Creation
 Query Generation
 Query Execution (+temporarily buffer writes to replicas)

Trusted

Untrusted

Key-Value Store

Pancake overview

Three important functionalities:
 Replica Creation
 Query Generation
 Query Execution (+temporarily buffer writes to replicas)

Trusted Untrusted | Key-Value Store

Input
Distribution

Pancake overview

Three important functionalities:

* Replica Creation

Input
Distribution

Trusted

Untrusted | Key-Value Store

41b

(b
- 9ea

Pancake overview

Three important functionalities:
 Replica Creation

Trusted

a =>»41b, 9ea }

Input
Distribution

Untrusted | Key-Value Store

41b
Qea
715

Pancake overview

Three important functionalities:
 Replica Creation

Trusted Untrusted | Key-Value Store

41b
Oea
715
c16

)

Input
Distribution

Pancake overview

Three important functionalities:

* Replica Creation

Input
Distribution

Trusted

Untrusted | Key-Value Store

)

41b

Qea

715

cl16

2Ce

Pancake overview

Three important functionalities:
 Replica Creation

Trusted Untrusted | Key-Value Store
@ | 415
a =Y41b, 9ea ! - 9ea
b = 75 .
c = c16 [715
d => cl16
2Ce

Output

Input o
Distribution

Distribution

41b (| 9ea || 75 || c16 || 2ce
Replicas

Pancake overview

Three important functionalities:

* Query Generation

Trusted Untrusted | Key-Value Store
@ | 415
a =Y41b, 9ea ! - 9ea
b = 75 .
c = c16 [715
d => cl16
2Ce

Output

Input o
Distribution

Distribution

41b (| 9ea || 75 || c16 || 2ce
Replicas

Pancake overview

Three important functionalities:

 Query Execution (+temporarily buffer writes to replicas)

Trusted Untrusted | Key-Value Store
G | 41
a =Y41b, 9ea ! - 9ea
b = 75 .
c = c16 (715
d = 2ce . c16
Buffer writes to .
replicas 2ce

Output

Input Bt
Distribution

Distribution

.

41b (| 9ea || 75 || c16 || 2ce
Replicas

Pancake overview

Three important functionalities:

 Query Execution (+temporarily buffer writes to replicas)

Trusted Untrusted | Key-Value Store
G | 4 1b
O | o
{ 745
: c16
Buffer writes to .
replicas 2ce

Output

Input Bt
Distribution

Distribution

41b (| 9ea || 75 || c16 || 2ce
Proxy is stateful Replicas .

Challenges with Centralized and Stateful Proxy

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

Qea

715

c16

e L

2ce

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

@O [[=]gy 8| Write(a,)

)

Qea

715

c16

e L

2ce

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

@O [[=]gy 8| Write(a,)

)

Qea

715

c16

e L

2ce

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

@O [[=]gy 8| Write(a,)

)

Qea

715

c16

PO |

2ce

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

Qea

715

c16

PO |

2ce

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

Qea

715

c16

PO |

2ce

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

Qea

715

c16

PO |

2ce

Challenges with Centralized and Stateful Proxy

Trusted

Untrusted

Key-Value Store

PO |

41b

Qea

715

c16

2ce

Inconsistency across replicas

Challenges with Centralized and Stateful Proxy

Trusted

Untrusted

Key-Value Store

PO |

41b

Qea

715

c16

2ce

Inconsistency across replicas

> Fetch all the replicas of a to
determine the latest value

Violates Security
(correlated accesses)

Challenges with Centralized and Stateful Proxy

Trusted Untrusted | Key-Value Store

41b

Qea

75

c16

PUAL |

2ce

Challenges with Centralized and Stateful Proxy

Untrusted

Key-Value Store

CUSAL |

41b

Qea

75

c16

2ce

» Fetch the entire database to
avoid security violations

Huge bandwidth overhead
(large periods of unavailability)

Challenges with Centralized and Stateful Proxy

Centralized, Stateful, Proxy:

Security violation or long periods of unavailability

This work

Design of Shortstack:

Distributed, Fault-tolerant, Oblivious Data Access System

10

Shortstack Summary

Trusted

Untrusted

Key-Value Store

41b
Oea
75f
c16

2Ce

11

Shortstack Summary

Trusted

Untrusted

Key-Value Store

41b
Oea
75f
c16

2Ce

11

Shortstack Summary

Trusted Untrusted | Key-Value Store

41b
Oea
75f
c16

2Ce

!

o™ W E m m mmEEmEE o,
L BN BN BN B B B B OB OB OB W

ot
o ol

1. Oblivious data access guarantees, even under failures

e Fail-stop failure model
* Worst-case scenario : Arbitrary (bounded number of) failures at arbitrary times

11

Shortstack Summary

Trusted Untrusted

Key-Value Store

41b
Oea
75f
c16

2Ce

1. Oblivious data access guarantees, even under failures

e Fail-stop failure model

* Worst-case scenario : Arbitrary (bounded number of) failures at arbitrary times

2. System Availability

11

Shortstack Summary

Trusted Untrusted | Key-Value Store

41b
Oea
75f
c16

2Ce

1. Oblivious data access guarantees, even under failures

e Fail-stop failure model

* Worst-case scenario : Arbitrary (bounded number of) failures at arbitrary times
2. System Availability

3. Scalability: Alleviate bandwidth & compute bottlenecks, throughput linear in #physical-servers

11

Shortstack Summary

Trusted Untrusted | Key-Value Store

41b
Oea
75f
c16

2Ce

1. Oblivious data access guarantees, even under failures

e Fail-stop failure model

* Worst-case scenario : Arbitrary (bounded number of) failures at arbitrary times
2. System Availability

3. Scalability: Alleviate bandwidth & compute bottlenecks, throughput linear in #physical-servers

Threat Model: Honest-but-curious Adversary (Or, Passive persistent adversary— The Pancake model)

11

Shortstack Key Insight

Shortstack Key Insight

Obliviousness requires output distribution to be independent of input distribution

12

Shortstack Key Insight

Obliviousness requires output distribution to be independent of input distribution
Uniform distribution is one but not the only way to achieve independence

12

Shortstack Key Insight

Obliviousness requires output distribution to be independent of input distribution
Uniform distribution is one but not the only way to achieve independence

Trusted Untrusted | Key-Value Store

41b
ea
75f
c16

2Ce

Shortstack Key Insight

Obliviousness requires output distribution to be independent of input distribution
Uniform distribution is one but not the only way to achieve independence

Trusted Untrusted | Key-Value Store

41b
Oea
751
c16

2ce

Input
Distribution

Output

41b 9ea 715 c¢16 2ce

Shortstack Key Insight

Obliviousness requires output distribution to be independent of input distribution
Uniform distribution is one but not the only way to achieve independence

Trusted Untrusted | Key-Value Store

41b
ea
751
c16

2Ce

Input
Distribution

Output
> Distribution

41b 2ce

Shortstack Key Insight

Obliviousness requires output distribution to be independent of input distribution
Uniform distribution is one but not the only way to achieve independence

Trusted Untrusted | Key-Value Store

41b
Oea
751
c16

2ce

Input Output
Distribution — Distribution
A 41b 2ce
Another
Input
Distribution

Shortstack Design Principle #1

Shortstack Design Principle #1

13

Shortstack Design Principle #1

Trusted

Proxy :
\ =

Untrusted | Key-Value Store

41b

Qea

75
c16

2ce

Output

41b 9Qea 75 c¢16 2ce

13

Shortstack Design Principle #1

Trusted

- N

Client

Untrusted | Key-Value Store

41b

Qea

=

715
c16

2ce

Output

41b 9ea 7f5 c¢16 2ce

13

Shortstack Design Principle #1

Trusted Untrusted | Key-Value Store

. . 41b

Client | | Jea
: . > 7f5

E E cl16

: : 2ce

o

Output
Distributior . . .

41b 9ea 7f5 c¢16 2ce

Upon failure, output distribution is uniform over a random subset of replicas

Output distribution is independent of input distribution (realizing our key insight)

13

Shortstack Design Principle #2

Trusted Untrusted | Key-Value Store

- N e
E E 2ce
_ / Output

41b 9Qea 7f5 c¢16 2ce

41b

Qea
7t5
c16

14

Shortstack Design Principle #2

‘-- -----------------

Proxy State Partition Proxy state by Keys

a =) 41b,9ea !

b = 75 .

C =» 16

d = 2ce

Trusted Untrusted | Key-Value Store

2 * 41b
. g 7f5
E E cl16
: : 2ce

: / E E Output

41b 9Qea 7f5 c¢16 2ce

14

Shortstack Design Principle #2

‘-- -----------------

Proxy State Partition Proxy state by Keys

a =) 41b,9ea !

b = 75 Example to provide intuition

cC =» cl16

d = 2ce

Trusted Untrusted | Key-Value Store

2 * 41b
- g 715
E E c16
: : 2ce

: / E E Output

41b 9Qea 7f5 c¢16 2ce

14

Shortstack Design Principle #2

Example to provide intuition

Trusted

Untrusted | Key-Value Store

41b

Qea
7t5
c16

.40

/ b g 2ce
Client

Shortstack Design Principle #2

Example to provide intuition

Trusted

Untrusted | Key-Value Store

41b

Qea
7t5
c16

.40

/ b g 2ce
Client

Shortstack Design Principle #2

Example to provide intuition

Trusted

Untrusted | Key-Value Store

41b

Qea
7t5
c16

/ A a 2ce
Client
Would need synchronization

Expensive!

.40

Shortstack Design Principle #2

Trusted

-

o

Partition Proxy state by Keys

Untrusted | Key-Value Store

41b

Qea
7t5
c16

2ce

.40

16

Shortstack Design Principle #2

Trusted

-

o

Partition Proxy state by Keys

Untrusted | Key-Value Store

41b

Qea
7t5
c16

2ce

.40

16

Shortstack Design Principle #3

Trusted

-

o

Untrusted | Key-Value Store

41b

Qea

7t5
c16

2ce

.40

17

Shortstack Design Principle #3

Query Generation over all Keys

Trusted

Untrusted | Key-Value Store

41b

Qea

-

o

7t5
c16

2ce

.40

17

Shortstack Design Principle #3

Example to provide intuition
Trusted

Untrusted | Key-Value Store

G | b

e —
g o 75

? o

2ce

o

Shortstack Design Principle #3

Example to provide intuition

17

Input
Distribution

A

Shortstack Design Principle #3

Example to provide intuition

17

Input
Distribution

A

Shortstack Design Principle #3

Example to provide intuition

@]
O

17

Input
Distribution

A

Shortstack Design Principle #3

Example to provide intuition

A

Output
Distribution

41b 9ea 715 :016 2ce

@]
O

Replicas

17

Input
Distribution

A

Shortstack Design Principle #3

Example to provide intuition

Output o
Distribution

41b 9ea 715 :016 2ce

@]
O

Replicas

17

Shortstack Design Principle #3

Example to provide intuition
Trusted

Untrusted | Key-Value Store

G | b

e —
g o 75

? o

2ce

o

Trusted

o N

o

Shortstack Design Principle #3

Query Generation over all Keys

Untrusted | Key-Value Store

41b

Qea
7t5
c16

2ce

.40

18

Shortstack Design Principle #3

Trusted

Untrusted | Key-Value Store

2k | @ -
> N T -
B[s
: s : | = 16
2ce
ion

Output

41b 9ea 75 cl16 2ce

18

Shortstack Design Summary: Logical

Trusted

A

Untrusted | Key-Value Store

41b

o N

o

Qea
7t5
c16

2ce

.40

19

Shortstack Design Summary: Logical

Trusted

o N

o

Query
Generation
'

Layer 1

Proxy

Qea

Untrusted | Key-Value Store

41b

c16

Qea
7t5
c16

2ce

.40

19

Shortstack Design Summary: Logical

Query Proxy
Generation State

Trusted

o N

o

Layer 1

Layer 2

Proxy

Qea

Untrusted | Key-Value Store

41b

c16

Qea
7t5
c16

2ce

.40

19

Shortstack Design Summary: Logical

Query Proxy Query
Generation State Execution

Trusted

o N

o

Layer 1

Layer 2

Layer 3

Untrusted | Key-Value Store

41b

Qea
7t5
c16

2ce

.40

19

Shortstack Design Summary: Logical

Trusted

e NG

o

Query
Generation

\

Layer 1

Proxy
State

\

Layer 2

Query
Execution

v

Layer 3

Untrusted

Key-Value Store

20

Shortstack Design Summary: Logical

Query
Trusted Generation

\/
Client @
Ciient NI
5
O
o A
=
g*x
Ao Layer 1
I

Proxy
State

\

Layer 2

Query
Execution

v

Layer 3

Untrusted

Key-Value Store

20

Trusted

Shortstack Design Summary: Logical

o
N

"
ot

ted

domly

ROU
~

nan

Query
Generation

\

Layer 1

o~

ted by Key

ROU

Proxy
State

\

Layer 2

Query
Execution

v

Layer 3

Untrusted

Key-Value Store

20

Shortstack Design Summary: Logical

Query Proxy Query
Generation State Execution
Trusted

Y y ‘ Untrusted | Key-Value Store

Client = | < .
\- -Iq—') A > 8
5 ¥ a
oC A > ()
>N / O 0C
= 7 /|5

Ao Layer 1 5 Layer 2 O Layer 3

Client s T =
N C

20

Trusted

-
e g

Shortstack Fault Tolerance

Layer 1

Layer 2

Layer 3

Untrusted

Key-Value

Store

21

Shortstack Fault Tolerance

Trusted

--

T T § R RN . e o Key-Value
g) i) ") : + | Untrusted Store
; : : : .

Client \ - N (~ g .
Cllent :\ / k y - y

.....
ll

--

22

Shortstack Fault Tolerance

Trusted

T T § R RN . e . Key-Value
(A i A ") Untrusted Store

.....
ll

L3 failures: Redistribute requests across remaining servers

22

Trusted

o N
e g

Shortstack Fault Tolerance

~~~~

(" ) (" ) (" )
L1A L2A L3A
\ _/ \ _/ \ _/
(" ) (" ) (" )
L1B L2B L3B
\_ J \_ J \_ J
(" ) (" ) (" )
L1C L2C L3C
\ _/ \ _/ \ _/

.....
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

L3 failures: Redistribute requests across remaining servers

L1 and L2 failures handled through chain replication

Untrusted

Key-Value

Store

22




Trusted

o N
e g

Shortstack Fault Tolerance

---------------------------------------------------------------------------------------------------------------------------------------------
~~~~

Head Mid Talil
_ O\ O\ _J _ _J _ _J
a) a) a)
L1B L2B L3B
_ J _ J _ J
4) 4) 4)
L1C L2C L3C
_ _J _ _J _ _J

......
ll

L3 failures: Redistribute requests across remaining servers

L1 and L2 failures handled through chain replication

Untrusted

Key-Value
Store

22

Trusted

o N
e g

Shortstack Fault Tolerance

~~~~

Head Mid Tall
\_ _J J _J \_ _J \_ _J
e N N ) e ) e )

......
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

L3 failures: Redistribute requests across remaining servers

L1 and L2 failures handled through chain replication

Untrusted

Key-Value
Store

22




Trusted

o N
e g

Shortstack Fault Tolerance

---------------------------------------------------------------------------------------------------------------------------------------------
~~~~

4 N\ N\) _.f N\ N\) 4)
LA || LA | [L1A |1 [L2A || L2A | | L2A ™
Head | | Mid Tail . |Head | | Mid Tail

_ /L /L _J k /L /L _J _ _J

4 N\ [N\ [) f N\ [N\ [) 4)
L1B | | L1B | | L1B LB || L2B || L2B 3R
Head Mid Tail . | Head Mid Tail

_ /L /L y, k /L /L y, _ y,

4 N\ N\) f N\ N\) 4)
L1C | | L1C | | L1C | L2c || Lec | Lec a0
Head | | Mid Tail . |Head | | Mid Tail

_ O\ O\ _J _ O\ O\ _J _ _J

......
ll

L3 failures: Redistribute requests across remaining servers

L1 and L2 failures handled through chain replication

Untrusted

Key-Value
Store

22

Trusted

e N
e g

—------------.

Logical=>Physical Design

Physical Server 1

Physical Server 2

Physical Server 3

A E E E E EE E E BE BB NGB BB BB B BB BB B B

Untrusted

Key-Value
Store

23

Trusted

e N
e g

v H H H H H H E HE H H E B E H H = = = = = = = = = g,

Logical=>Physical Design

Physical Server 1

Physical Server 2

Physical Server 3

Y4

Untrusted

Key-Value
Store

23

Logical=>Physical Design

Trusted

--

¢ T TR . T TR)) | . Key-VaIue

1 1A 1 A HESTRUEE 22 B 2 BETISI Untrusted | Store
f Head = Mic IR FTIYEE Head [Mic NERETNE
\- J N\ J
- N N\ =
(LB | FEEN FEE
|Head | [SULL Tail §

r 2
L1C

e N
e g

L2B L2B

Mid Tail

r 2
L2C
Mid

N b

—
(o))
00

e e e e e e e e
A

v H H H H H H E HE H H E B E H H = = = = = = = = = g,

Y4

Physical Server 1 Physical Server 2 Physical Server 3

23

Logical=>Physical Design

Trusted

--

’ TR, . TR,) } . s‘ Key-VaIue
: Untrusted Store
2 L2A L2A L2A E

f Head | Mid | Tail §

e N
e g

1B || L2B | L2B §

I Lis fus e RS
i Head | Mid Tail §

f Head | Mid i Tail §

i Lic f Lic § Lic |
|l Head i Mid Tail §

« \d « \d
--

v H H H H H H E HE H H E B E H H = = = = = = = = = g,
Il = EH E =E =HE = =H =H = =E =, = =B = = = =B =B =B = = = =

Physical Server 1 Physical Server 2 Physical Server 3

23

Logical=>Physical Design

Trusted

--

’ TR, . TR,) } . s‘ Key-VaIue
: Untrusted Store
2 L2A L2A L2A E

f Head | Mid | Tail §

e N
e g

1B || L2B | L2B §

I Lis fus e RS
i Head | Mid Tail §

f Head | Mid i Tail §

i Lic f Lic § Lic |
|l Head i Mid Tail §

« \d « \d
--

Physical Server 1 Physical Server 2 Physical Server 3

v H H H H H H E HE H H E B E H H = = = = = = = = = g,
Il = EH E =E =HE = =H =H = =E =, = =B = = = =B =B =B = = = =

Shortstack needs 3 physical servers for handling 2 failures

23

Trusted

e N
e g

Logical=>Physical Design

--

Key-Value
Store

L2A L 2A L 2A Untrusted
J Head | Mid Tail E
J i N s e (AN 128 N o8 N 128 | L »

f Head | Mid | Tail FEANE Head | Mid | Tail

I Lic f Lic Fuic

v H H H H H H E HE H H E B E H H = = = = = = = = = g,
Il = EH E =E =HE = =H =H = =E =, = =B = = = =B =B =B = = = =

f Head | Mid | Tail |

« \d « \d
--

Physical Server 1 Physical Server 2

Physical Server 3

Shortstack needs 3 physical servers for handling 2 failures

Shortstack needs f+71 physical servers for handling f failures

23

This work

Security model:
Enables formal study of Distributed, Fault-tolerant, Oblivious Data Access systems

24

Security Model

Security Model

25

Security Model

New, General, Security Model

25

Security Model

New, General, Security Model

Powerful adversary that cause

arbitrary failures (bounded number)
at arbitrary times

25

Security Model

New, General, Security Model

Powerful adversary that cause

arbitrary failures (bounded number)
at arbitrary times

Output distribution independent of
iInput distribution
(Oblivious data access guarantee)

25

Security Model

New, General, Security Model

Powerful adversary that cause Output distribution independent of

arbitrary failures (bounded number) input distribution
at arbitrary times (Oblivious data access guarantee)

(Formal definitions and proof of Shortstack security in paper)

25

Evaluation

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side

 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side

 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160

120

80

40

Throughput (Kops)

0
1 2 3 4

Number of Physical Servers

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
e
©)
S A e
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
e
©)
> 40 |
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
e
©)
S 40 |l -
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
L
®)
S 40 |l N
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26

Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
L
®)
S 40 |l N
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26

Evaluation

ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)
Goal: Demonstrating throughput scalability with number of physical servers
Many additional results in the Paper...
1. System Scalability
Fault Tolerance
Latency
Bottlenecks in each layer

A

Skewed workloads

Conclusion

ARTIFACT
EVALUATED

susenix
; ASSOCIATION

REPRODUCED

ARTIFACT
EVALUATED

usenix
i ASSOCIATION

Challenges with Centralized Oblivious Data Access Systems
1. Insecure or unavailable during failures
2. Scalability bottleneck

Design of Shortstack:

Distributed, Fault-tolerant, Oblivious Data Access System

ARTIFACT
EVALUATED

rusenix
ASSOCIATION

AVAILABLE

Security model:

https://qgithub.com/pancake-security/shortstack

Enables formal study of Distributed, Fault-tolerant, Oblivious Data Access systems

28

https://github.com/pancake-security/shortstack
https://github.com/pancake-security/shortstack

