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Oblivious Data Access: Output distribution independent of input distribution
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ORAM Pancake
Bandwidth Overhead Large O(log n) Constant (3x)
Adversarial Model Active Honest-but-curious

(Can inject queries) (Does not inject queries)
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All existing oblivious data access techniques use centralized (stateful) proxy
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Security model:
Enables formal study of Distributed, Fault-tolerant, Oblivious Data Access systems
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1. Oblivious data access guarantees, even under failures

e Fail-stop failure model

* Worst-case scenario : Arbitrary (bounded number of) failures at arbitrary times
2. System Availability

3. Scalability: Alleviate bandwidth & compute bottlenecks, throughput linear in #physical-servers

Threat Model: Honest-but-curious Adversary (Or, Passive persistent adversary— The Pancake model)
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Security Model

New, General, Security Model

Powerful adversary that cause Output distribution independent of

arbitrary failures (bounded number) input distribution
at arbitrary times (Oblivious data access guarantee)

(Formal definitions and proof of Shortstack security in paper)

25



Evaluation



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side

 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side

 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160

120

80

40

Throughput (Kops)

0
1 2 3 4

Number of Physical Servers

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
e
©)
S A e
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
e
©)
> 40 |
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
e
©)
S 40 |l -
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
L
®)
S 40 |l N
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26



Evaluation

 ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
 Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)

 Goal: Demonstrating throughput scalability with number of physical servers

160
)
S 120
X
a 80
L
®)
S 40 |l N
— Throughput with
0 Centralized proxy

1 2 3 4

Number of Physical Servers

26



Evaluation

ShortStack end-to-end implementation open-sourced
* Requires no modifications to the server side
Evaluation on EC2 with Redis as the key-value store
« YCSB-A and YCSB-C workloads (more details in the paper)
Goal: Demonstrating throughput scalability with number of physical servers
Many additional results in the Paper...
1. System Scalability
Fault Tolerance
Latency
Bottlenecks in each layer

A

Skewed workloads



Conclusion
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REPRODUCED
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Challenges with Centralized Oblivious Data Access Systems
1. Insecure or unavailable during failures
2. Scalability bottleneck

Design of Shortstack:

Distributed, Fault-tolerant, Oblivious Data Access System

ARTIFACT
EVALUATED

rusenix
ASSOCIATION

AVAILABLE

Security model:

https://qgithub.com/pancake-security/shortstack

Enables formal study of Distributed, Fault-tolerant, Oblivious Data Access systems
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