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Memory Capacity Bottleneck in Datacenters

&

Growing imbalance between processor Memory underutilization in datacenters
computation and memory capacity
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Far-Memory System
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High-level Languages
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Applications written in high-
level languages are dominant

in datacenter workloads.
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Garbage Collection

Local Mem Ratio

Slowdown 2.6x 3.4x

Tracing is done concurrently
with applications
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Resource Competition
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Ineffective Prefetching
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With Concurrent Tracing
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Can we disable concurrent tracing?

End-to-end Execution Time
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Are application and garbage collection
completely unrelated?
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Observations

1 Application and GC are just temporally unaligned

2 Changing object access order in GC is possible
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Key Design Idea

GC Thread

App Thread

(a) Current runtime
1o .\ Samueli
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App Thread

(b) MemLiner runtime
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Object Classification

1. Local Objects: Currently being accessed by application threads

e GC threads should touch

2. Incoming Objects: In remote memory, will soon be accessed by app threads

e GC threads should touch

3. Distant Objects: In remote memory, will not be accessed by app threads soon

* GC threads should delay the access
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Challenges in Classifying Objects

’ f,&j How to inform GC threads accessed objects

’ ;:}; What kind of objects will be accessed by app threads soon
’ 9 How to estimate the location of objects
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Barriers

Read Operation

Write Operation
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Pre-read Barrier

a=>b.f or a=Dbli]

Post-read Barrier

Pre-write Barrier
b.f =a or bli]=a

Post-write Barrier
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Local Objects
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Incoming Objects

‘ Currently being
accessed by app

@ In remote memory,
used by app soon
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Distant Objects

PN
Current ’

Epoch (14 bits) (4 bits) (4 bits) 4TB address space)
N~ ~—— —
Counter maintained by kernel Object reference maintained by runtime

Diff(E5) M < 3
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Benchmarks

 MemlLiner is implemented in two widely-used garbage collectors:
« G1GC
« Shenandoah GC

« Evaluated MemLiner on 12 workloads using a range of local memory

ratios

* MemlLiner is run on two swap systems: Fastswap and Leap
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Results: Throughput

G1 GC
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Results: Prefetching Effectiveness

Prefetching Accuracy and Coverage

« An average of 1.6x speed up 0.7 co0%s 629%
under 25% local memory on 0.6
Leap , 9 44%
& 04
c
S 0.3 25%
« Reduces 58% of on-demand 5
swap-ins, and 53% of total 02
swap-ins on average. 0.1
0

Accuracy Coverage
m Unmodified JVM = MemLiner

1o .\ Samueli -

School of Engineering



Key Takeaways

Runtime should also be taken into

Applications : .
—— —— consideration when hardware
L . o
< Runtime changes
\\ I/
OS Kernel . . .
 Runtime serves as a semantic bridge
CPU || Memory || Far Memory between application and underlying
OS/hardware architecture
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Thank you! Code at https:/github.com/uclasystem/MemL.iner. RTRTRETE RPENGOGED

Samueli
UCLA School of Engineering

21


https://github.com/uclasystem/MemLiner

Q&A
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