ARTIFACT ARTIFACT ARTIFACT

. EVALUATED EVALUATED EVALUATED
U LA Samuell usenix usenix usenix
C . L B @ associaTion | | & @ Association | | & @ AssociaTion
School of Engineering 4 4 4

AVAILABLE REPRODUCED

MemLiner: Lining Up Tracing and Application for a
Far-Memory-Friendly Runtime

Chenxi Wang*, Haoran Ma* (co-first author), Shi Liu, Yifan Qiao,
Jonathan Eyolfson, Christian Navasca, Shan Lu, Guoqing Harry Xu

Memory Capacity Bottleneck in Datacenters

&

Growing imbalance between processor Memory underutilization in datacenters
computation and memory capacity

Samueli
UCLA School of Engineering

Far-Memory System

Host Server Remote Memory Pool
Fo-=---------- .
1 ~ 1
: 60 ns : Network R RN
| Small Local ! e.g. RDMA over InfiniBand
| Memory !
U 1

Samueli
UCLA School of Engineering

High-level Languages

spaid “2F .neoa

cassandra

Applications written in high-
level languages are dominant

in datacenter workloads.

é—fj Javar !Scala P

Samueli
UCLA School of Engineering

Applications
— - —

[— . N
- GC Runtime /
S e —
OS Kernel
CPU Memory Devices

Garbage Collection

Local Mem Ratio

Slowdown 2.6x 3.4x

Tracing is done concurrently
with applications

Samueli
UCLA School of Engineering

Resource Competition

Process

App Threads GC Threads

§ § Memory Servers
4

| Swap <
U S, _
InfiniBand

Samueli
UCLA School of Engineering

Ineffective Prefetching

30000

ex

© 27000
c

@ 24000

g

& 21000
18000

Faulty

15000

Without Concurrent Tracing

0 64 128 192 256 320 384 448 512
Page Fault Sequence

Samueli
UCLA School of Engineering

With Concurrent Tracing

- ot = P - o
e
-y

o - - o - oo o0 ctmun oo omman o

o oo 0 % . . - Nodron w ' @eq,
. ®oe o & o 00f NIn v -
o o .) o o .)
h' e . . o & -
L]
0 D TNL OB lBIND. SBye CBAAY F Vo0 om0 o o b b

0 64 128 192 256 320 384 448 512
Page Fault Sequence

Can we disable concurrent tracing?

End-to-end Execution Time

450
430
410

@ 390

£ 370

|—

E 350

® 330
o

8 310

Ll
200
270
250

Without Concurrent With Concurrent

Tracing

Samueli
UCLA School of Engineering

Tracing

80

Elapsed Time (s)

GC Pause Time

Without Concurrent With Concurrent
Tracing Tracing

Are application and garbage collection
completely unrelated?

Samueli
UCLA School of Engineering

Observations

1 Application and GC are just temporally unaligned

2 Changing object access order in GC is possible

Samueli
UCLA School of Engineering

10

Key Design Idea

GC Thread

App Thread

(a) Current runtime
1o .\ Samueli

School of Engineering

App Thread

(b) MemLiner runtime

11

Object Classification

1. Local Objects: Currently being accessed by application threads

e GC threads should touch

2. Incoming Objects: In remote memory, will soon be accessed by app threads

e GC threads should touch

3. Distant Objects: In remote memory, will not be accessed by app threads soon

* GC threads should delay the access

Samueli
UCLA School of Engineering

12

Challenges in Classifying Objects

’ f,&j How to inform GC threads accessed objects

’ ;:}; What kind of objects will be accessed by app threads soon
’ 9 How to estimate the location of objects

Samueli
UCLA School of Engineering

13

Barriers

Read Operation

Write Operation

Samueli
UCLA School of Engineering

Pre-read Barrier

a=>b.f or a=Dbli]

Post-read Barrier

Pre-write Barrier
b.f =a or bli]=a

Post-write Barrier

14

Local Objects

SIS
~ |l
N s
S

Application Threads GC Threads

|_Thread 1y 0000000000 I
_Thread 2 iy 0000000000 Thread 1
|_Thread 3 ey 0000000000
_Thread 4 i 0000000000 Thread 2
|_Thread 5l 00000000006 I3

Samueli
UCLA School of Engineering

Incoming Objects

‘ Currently being
accessed by app

@ In remote memory,
used by app soon

Samueli O\O
UCLA School of Engineering

Distant Objects

PN
Current ’

Epoch (14 bits) (4 bits) (4 bits) 4TB address space)
N~ ~—— —
Counter maintained by kernel Object reference maintained by runtime

Diff(E5) M < 3

A
Unused Timestamp GC Object Address (42 bits,

Samueli
UCLA School of Engineering 17

Benchmarks

 MemlLiner is implemented in two widely-used garbage collectors:
« G1GC
« Shenandoah GC

« Evaluated MemLiner on 12 workloads using a range of local memory

ratios

* MemlLiner is run on two swap systems: Fastswap and Leap

Samueli
UCLA School of Engineering

18

Results: Throughput

G1 GC

1.48 1.51

25% 13%
Local Memory Ratio

Samueli
UCLA School of Engineering

Speedup

24
2.2

1.8
1.6
1.4
1.2

Shenandoah GC

2.16

1.8

25% 13%
Local Memory Ratio

19

Results: Prefetching Effectiveness

Prefetching Accuracy and Coverage

« An average of 1.6x speed up 0.7 co0%s 629%
under 25% local memory on 0.6
Leap , 9 44%
& 04
c
S 0.3 25%
« Reduces 58% of on-demand 5
swap-ins, and 53% of total 02
swap-ins on average. 0.1
0

Accuracy Coverage
m Unmodified JVM = MemLiner

1o .\ Samueli -

School of Engineering

Key Takeaways

Runtime should also be taken into

Applications : .
—— —— consideration when hardware
L . o
< Runtime changes
\\ I/
OS Kernel . . .
 Runtime serves as a semantic bridge
CPU || Memory || Far Memory between application and underlying
OS/hardware architecture
ARTIFACT ARTIFACT ARTIFACT
EVAI.UATEP EVALUATED EVAI.UATEP
Thank you! Code at https:/github.com/uclasystem/MemL.iner. RTRTRETE RPENGOGED

Samueli
UCLA School of Engineering

21

https://github.com/uclasystem/MemLiner

Q&A

Samueli
UCLA School of Engineering

22

