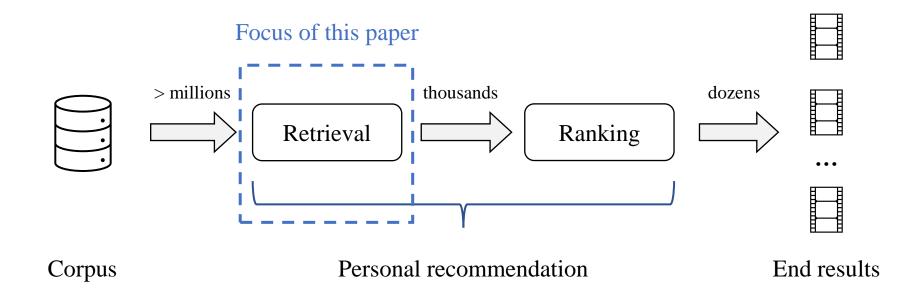
FAERY: An FPGA-accelerated Embedding-based Retrieval System

Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong Han, Yuhang Jiang, Ding Tang, Zilong Wang, Kai Chen, Chuanxiong Guo

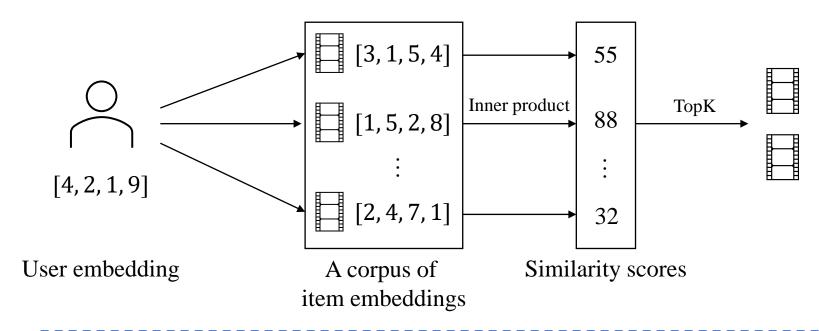
Hong Kong University of Science and Technology

ByteDance

Recommendation System



Embedding-based Retrieval (EBR)

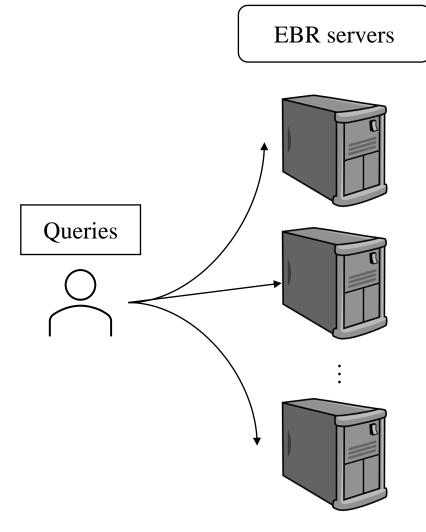


```
# Scoring
for i in corpus_size:
   item_emb = corpus[i] # corpus scanning
   scores[i] = sim_calc(user_emb, item_emb) # similarity calc
# K-selection
ret_items = topk(scores) # returns the sorted top_k items
```

Memory-intensive

Compute-intensive

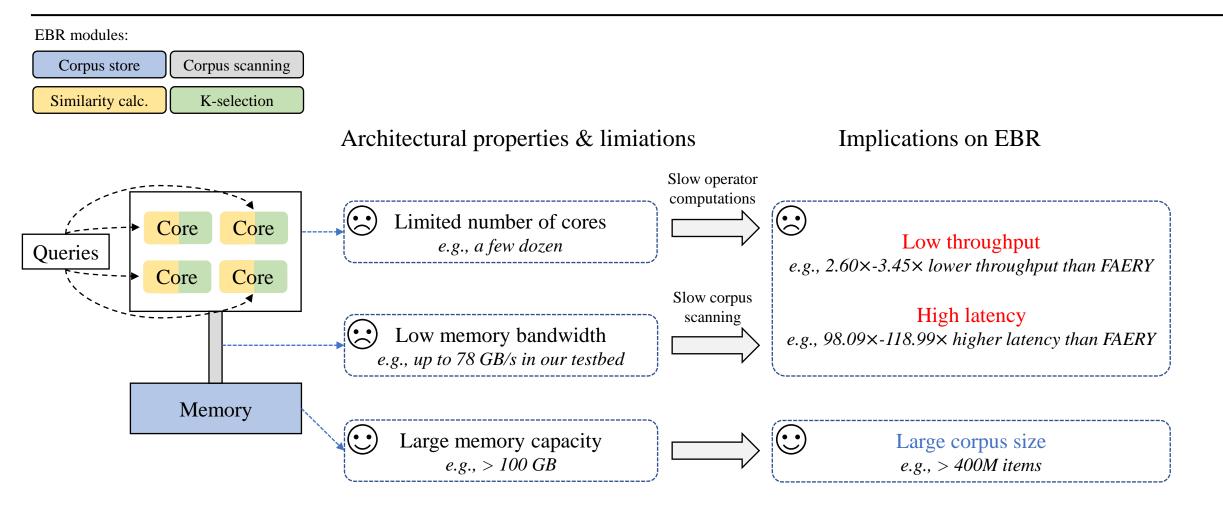
Requirement of EBR



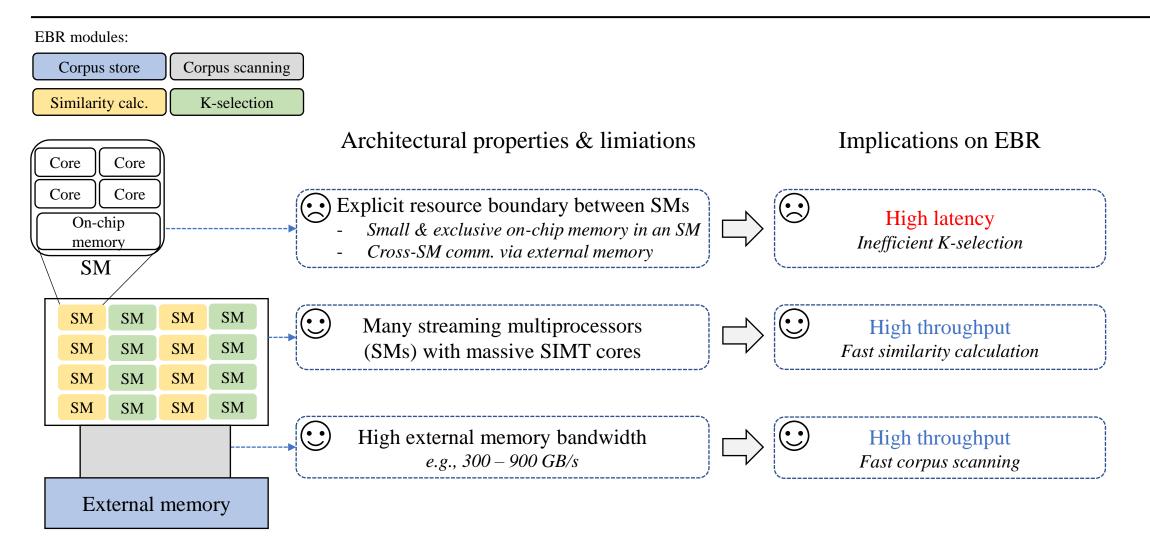
- High throughput
 - A small number of servers (low cost) to serve a target QPS
- Low latency
 Good user experience
 High quality of recommendation results
 - EBR system usually has a latency SLA (e.g., 10 ms)

Both throughput and latency (thus latency-bounded throughput) matter!

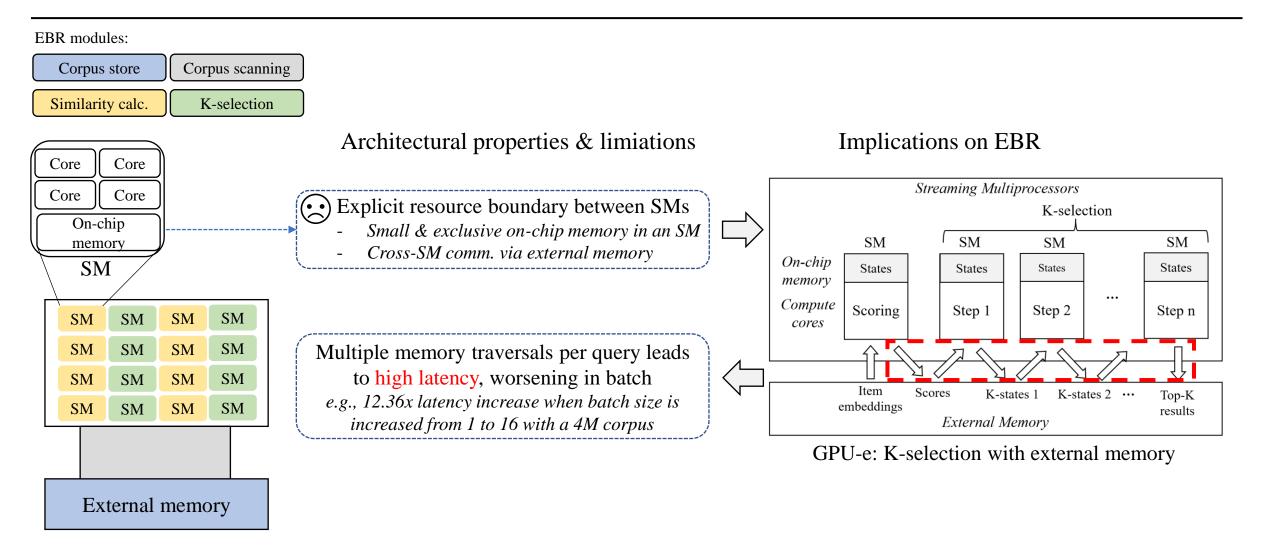
Existing Work: CPU-based EBR



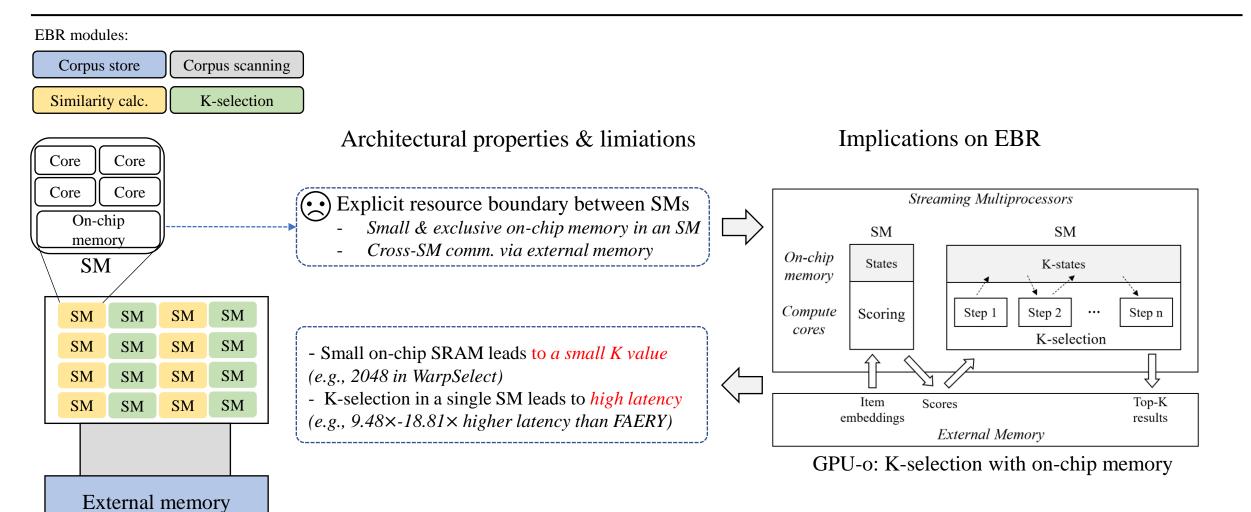
Existing Work: GPU-based EBR



Existing Work: GPU-based EBR (GPU-e)



Existing Work: GPU-based EBR (GPU-o)



Summary of Existing Work

- None of existing EBRs achieve high throughput and low latency simultaneously
 - CPU-based EBR:
 - **Pros:** Large memory capacity for large corpus size
 - **Cons:** Limited memory bandwith and limited number of CPU cores results in high latency and low throughput
 - GPU-based EBR:
 - **Pros:** High memory bandwidth for fast corpus scanning and massive SIMT cores for fast similarity calculation
 - Cons: Explicit resource boundary between SMs results in poor pipeline support and thus high latency and low latency-bounded throughput

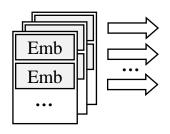
What should a practically ideal EBR architecture that achieves maximal latency-bounded throughput look like?

```
# Scoring
for i in corpus_size:
    item_emb = corpus[i] # corpus scanning
    scores[i] = sim_calc(user_emb, item_emb) # similarity calc
# K-selection
ret_items = topk(scores) # returns the sorted top_k items
```

Corpus store & corpus scanning

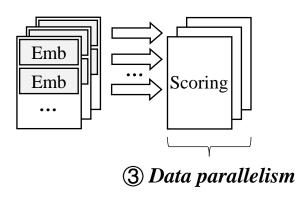
```
# Scoring
for i in corpus_size:
    item_emb = corpus[i] # corpus scanning
# Large external memory
# Large external memory
# High memory bandwidth
# Scores[i] = sim_calc(user_emb, item_emb) # similarity calc
# K-selection
# K-selection
# ret_items = topk(scores) # returns the sorted top_k items
```

(2) High memory bandwidth



1 Large external memory

Similarity calculation



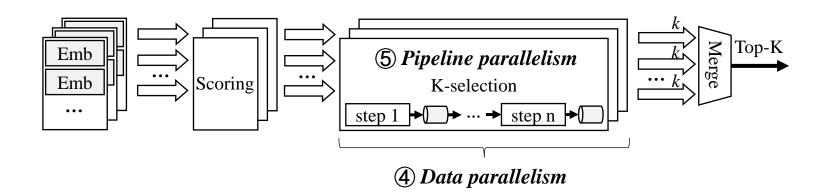
K-selection

```
# Scoring
for i in corpus_size:
    item_emb = corpus[i] # corpus scanning
    scores[i] = sim_calc(user_emb, item_emb) # similarity calc

# K-selection
ret_items = topk(scores) # returns the sorted top_k items

Data parallelism

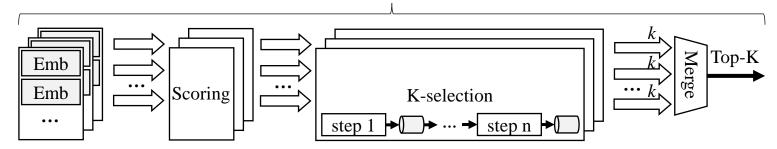
Pipeline parallelism
```



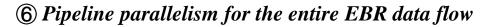
Entire EBR data flow

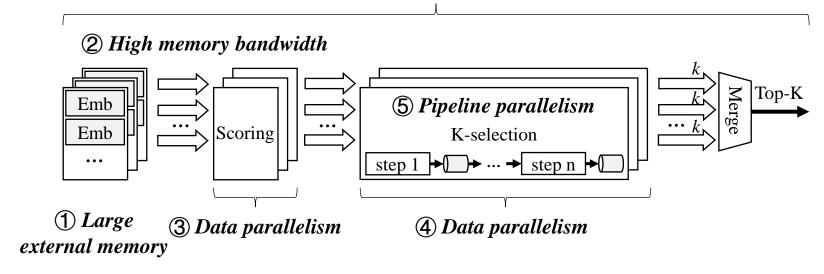
```
# Scoring
for i in corpus_size:
    item_emb = corpus[i] # corpus scanning
    scores[i] = sim_calc(user_emb, item_emb) # similarity calc
# K-selection
ret_items = topk(scores) # returns the sorted top_k items
```

6 Pipeline parallelism for the entire EBR data flow



Batch size = 1: achieve minimal latency





Fully-pipelined and non-congested data flow with a single pass of external memory

$$latency = \frac{S}{B} + C$$

(Theoretical lower bound: $\frac{S}{B}$)

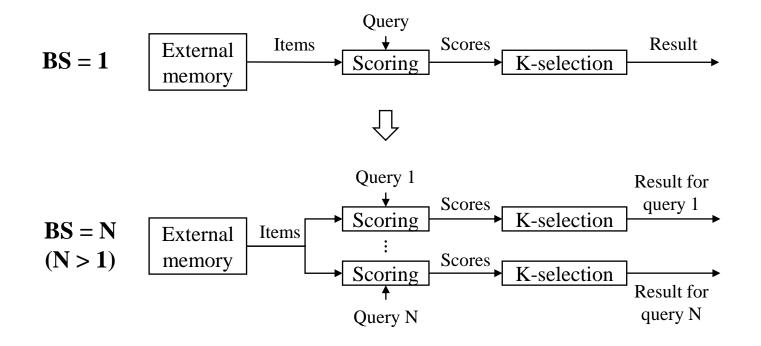
S: corpus size

B: memory bandwidth

C: pipeline latency

(typically small, so that $\frac{S}{B} + C \approx \frac{S}{B}$)

Batch size = N: achieve maximal latency-bounded throughput

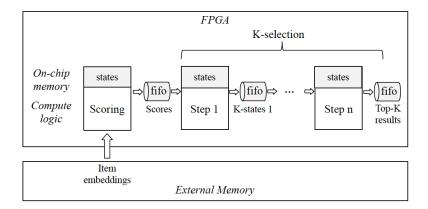


Increase latency-bounded throughput linearly by increasing batch size while preserving minimal latency

FPGA Opportunities for the Ideal Architecture

- FPGA is a programmable chip
 - HBM: 8-32GB, 460GB/s
 - Massive on-chip memories (10s of MB)
 - Massive programmable logic elements
 - Programmable interconnects

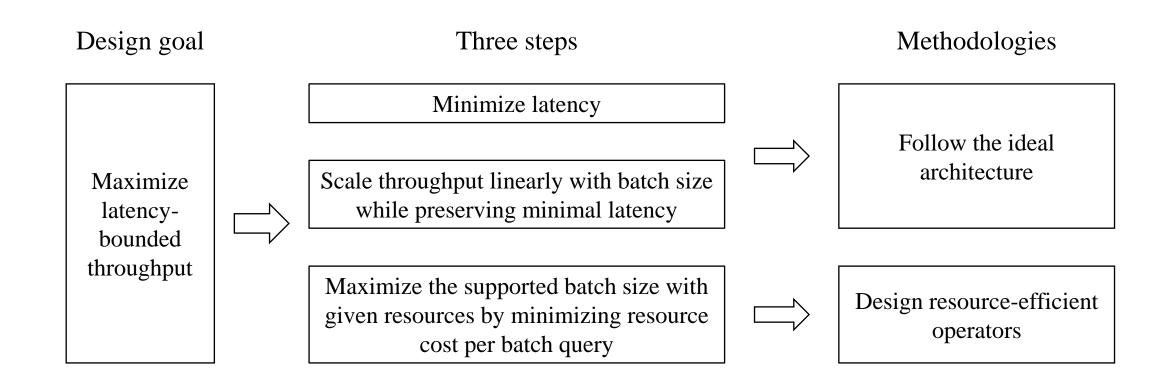
- Meet properties of the ideal EBR architecture
 - Moderate corpus store & fast corpus scanning
 - Data parallelism for similarity calculation
 - Data/pipeline parallelism for K-selection
 - Fully-pipelined data flow



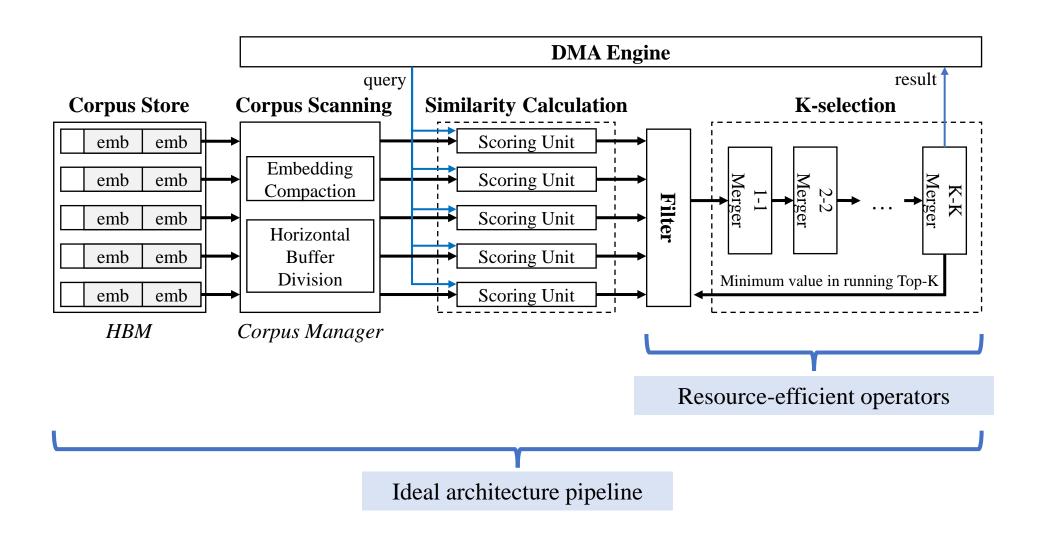
Motivate our design: **FAERY**

FPGA-Accelerated Embedding-based Retrieval sYstem)

FAERY Design Goal

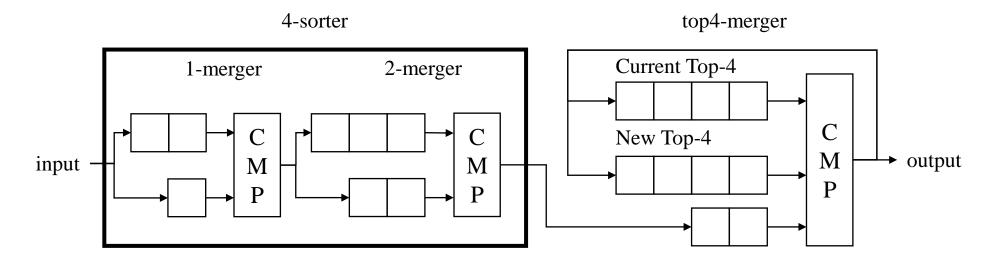


FAERY Accelerator Architecture



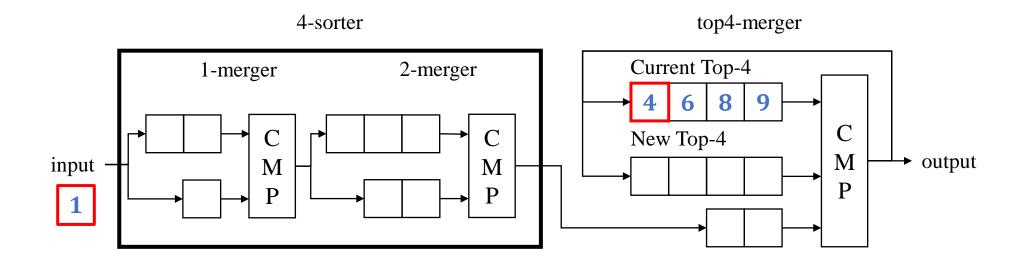
FAERY Accelerator - K-selection

An example of 4-selection pipeline based on bottom-up merge sort



- 1. Bottom-up merge sort allows processing input scores in a streaming manner.
- 2. Pipeline parallelism within K-selection is compute-efficient and scalable, e.g., the above architecture requires only O(logk) comparators.

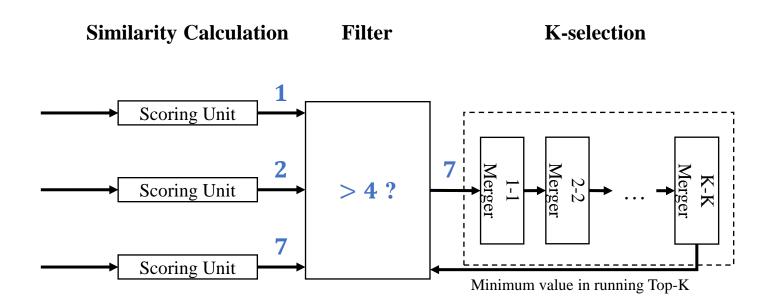
Observation



If the input score is **not greater** than the minimum score of the current Top-K result, this input will not be in the new Top-K result

These non-Top-K items can be early dropped to significantly reduce traffic to K-selection

FAERY Accelerator - Filter



Saving resource by using filter and a small number of K-selection pipelines to match the bandwidth of multiple scoring units

Prototype Implementation

Prototype setting

- Xilinx VU35P FPGA with a clock frequency of 400 MHz
- One embedding contains 128 elements of 2 bytes each
- *k* is 1024

Per-query pipeline implementation

HBM	Corpus manager	Similarity calculation	Filter	K-selection
8 GB & 460 GB/s Support 16M items	400 MHz matches the HBM bandwidth	Inner product latency = 6 clock cycles	Save 32% on-chip memories and 27% compute resources	Bottom-up merge sort latency = 1034 clock cycles

Resource utilization & batch implementation (batch size = 3)

	Per-query resources	Common resources
LUT	7.31%	11.05%
FF	6.98%	14.78%
BRAM	13.05%	10.66%
DSP	8.6%	0.07%

Evaluation Setup

Baseline:

- Faiss, an open-source similarity search library, which supports both CPU and GPU
- Faiss GPU implementation utilizes WarpSelect, denoted as GPU-o
- Another GPU baseline replaces WarpSelect with RadixSelect, denoted as GPU-e
- Ideal latency $(\frac{S}{B} + C)$ of the ideal architecture

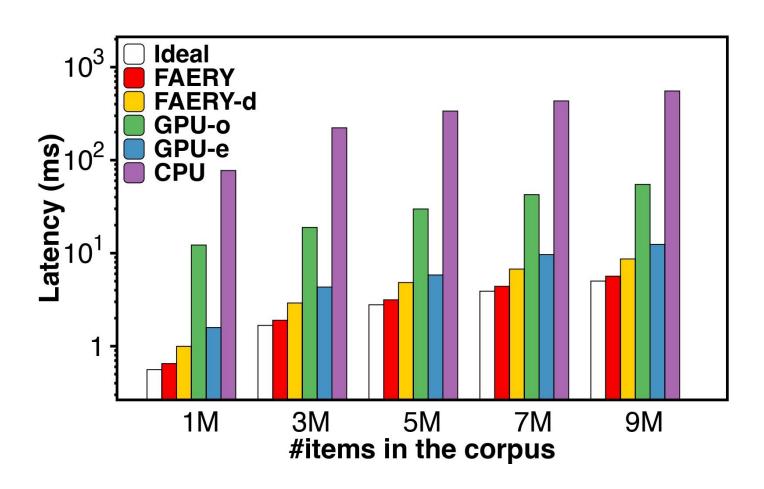
Platforms:

- CPU-based EBR: two 16-core Intel Xeon Gold 5218 CPUs
- GPU-based EBR: Nvidia T4 GPU with 300 GB/s GDDR6
- FAERY-d: degraded FAERY with the same memory bandwidth (300 GB/s) as T4

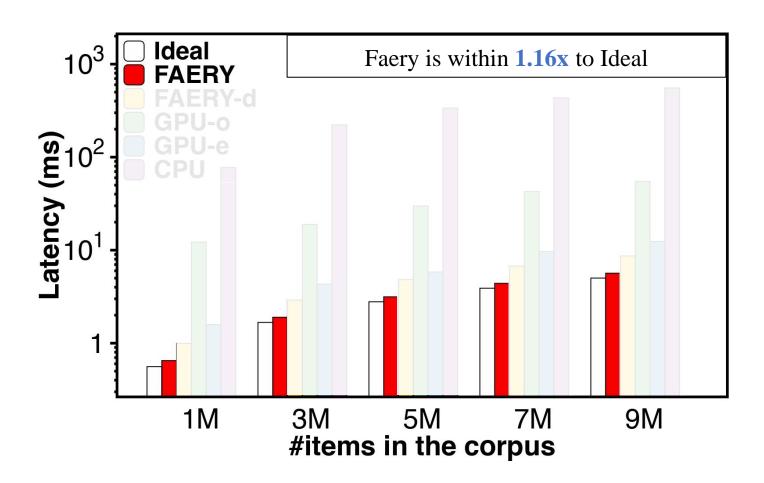
Corpora:

• Synthetic random corpora with different corpus size (1M-15M items)

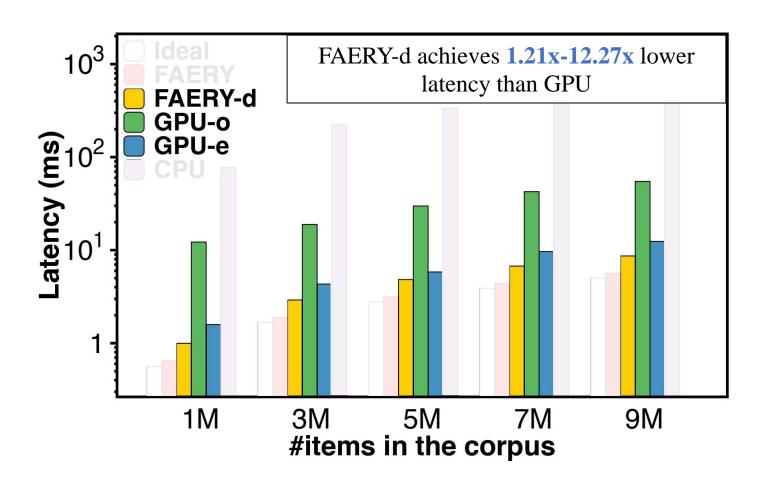
Latency



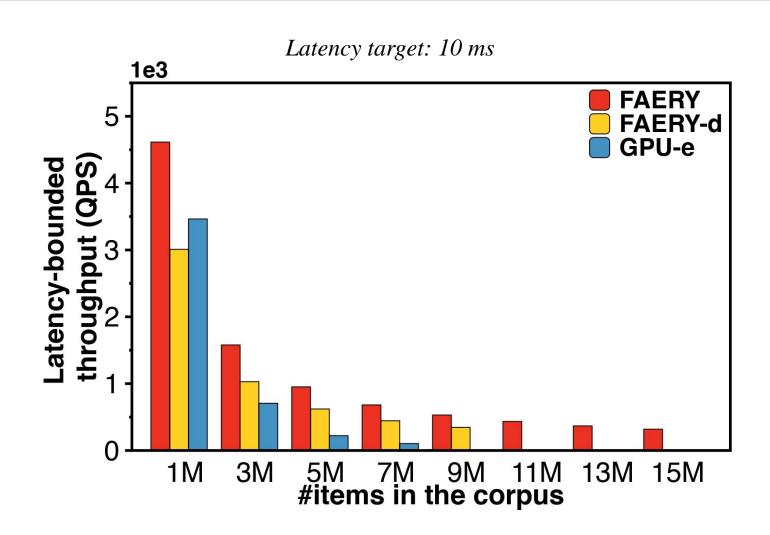
Latency



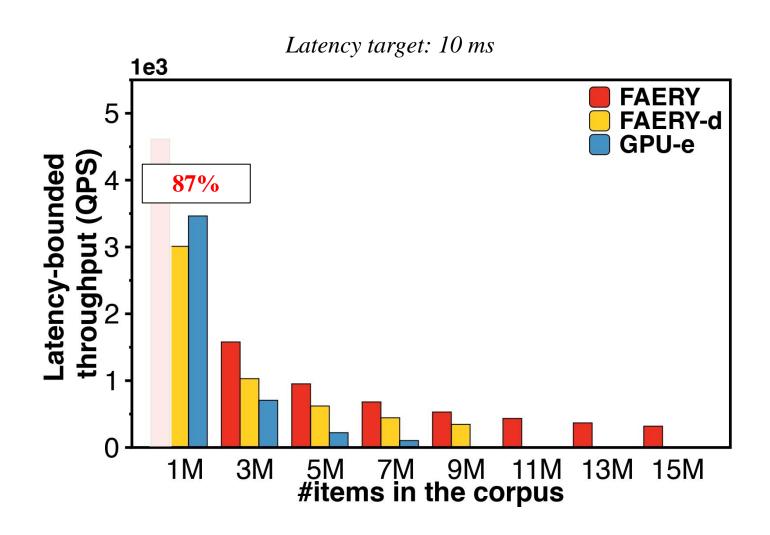
Latency



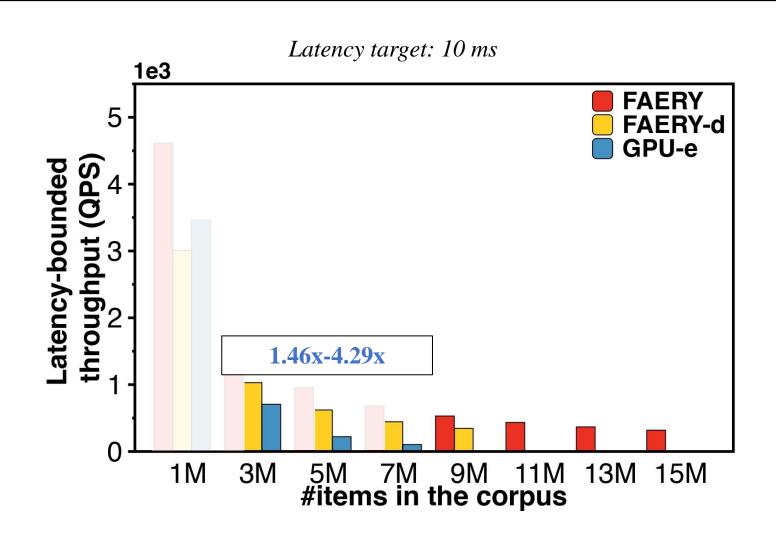
Latency-bounded Throughput



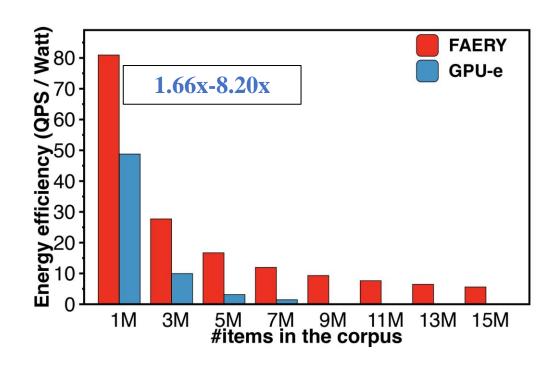
Latency-bounded Throughput

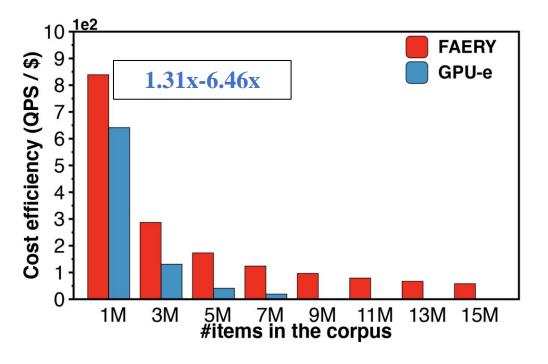


Latency-bounded Throughput



Energy & Cost Efficiency





Summary of Evaluation

Architecture	Properties
CPU-based EBR	Support extremely large corpus (> 100 GB) with poor performance
GPU-based EBR	Provide high raw throughput (up to 1.44x compared to FAERY) with poor latency
FAERY	Provide low latency (within 1.16x to ideal) and high latency-bounded throughput (up to 4.29x compared to GPU) with programmability/maintenance overhead

Conclusion

- We study the EBR algorithm from the first principles and derive a practically ideal EBR architecture
- We design FAERY, a domain specific accelerator for EBR, which is an embodiment of the ideal EBR architecture with filtering optimization
- FAERY can be extended to accelerate a generic vector search in future

Thank you!

Contact email: czengaf@connect.ust.hk