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Computation Capacity vs DNN Model Size

The growth of DNN model size significantly outpaces the growth of modern
accelerators [1]
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[1] Harmony: Overcoming the hurdles of GPU memory capacity to train massive DNN models on commodity servers



Sparsity Commonly Exists

Sparsity commonly exists in DNN models
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Researchers reveal that sparsity has orders of magnitude potential for computation and
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Evolving of Sparsity Pattern

Various approaches proposed to sparsify DNN models
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Obstacles of Sparsity Optimization
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With so many advanced sparsity patterns, we still only see limited gain in practice.



The Myth of Proxy Metrics

* ML researchers use proxy metrics due to the difficulty of kernel optimization

* Proxy metrics (FLOPs) do not necessarily translate into real latency
* Default sparse DNN library often leads to suboptimal performance
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Diminishing End-to-End Returns

e Operator-centric sparsity research missing global optimization opportunities
e Sparsity propagates across the graph, leading to higher sparsity ratio
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Across-Stack Innovations in Silos

 No mature end-to-end system that integrates various optimizations
 Models with different sparsity need to be optimized case by case

* |Individual solutions/innovations are hard to be extended to/combined with other
proposals



SparTA: An End-to-End Approach to Model Sparsity

Treat sparsity as 15t-class citizen in DNN compiler

* TeSA, Tensor with Sparsity Attribute, the core abstraction of SparTA
* Allow the specification of arbitrary sparsity pattern in any tensor

* TeSA propagation, exposing the full sparsity in an end-to-end manner

e Sparsity-aware execution plan transformation and code specialization
* Generate high-quality codes given any sparsity pattern on any DNN model



Core Abstraction: TeSA
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TeSA: Tensor with Sparsity Attribute

 Same shape as the original tensor, where each element represents a sparsity attribute
e Support element-wise sparsity specification to express arbitrary sparse pattern



System Architecture
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* Perform attribute propagation to infer the sparsity attributes of all other tensors



System Architecture

DNN Model (DFG)

Final Executable DNN Model
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e Perform attribute propagation to infer the sparsity attributes of all other tensors
* Transform the execution plan accordingly to take advantage of the given sparsity



System Architecture

DNN Model (DFG)
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e Perform attribute propagation to infer the sparsity attributes of all other tensors
* Transform the execution plan accordingly to take advantage of the given sparsity
* Perform the sparsity-aware code specialization



TeSA Propagation

 Different operators have different propagation behavior
* A clear interface to register/expand propagation rules for customized operators
» TeSA algebra and Tensor Scrambling can infer the propagation rule automatically
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Execution Transformation

e Transform the target pattern into one(some) pattern(s) that are easy to optimize
 Integrating different optimizations can achieve better performance
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void matmul_block_sparse( void matmul_finegrained(
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}



Code Specialization

e Kernel-level : eliminate dead computations by hardcoding sparsity pattern in code
* |nstruction-level : replacing computation with hardware specific instruction (e.g., wmma)
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What SparTA Achieves

* support various models, sparse patterns and their combinations
* discover full end-to-end opportunity
* integrates different sparse optimizations systematically

* real implementation (not proxy metrics) for algorithm



Evaluation on Various Patterns & Models
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SparTA’s speedup (up to) vs. 10.6x 20.1x 5.6x

* SparTA supports popular sparse patterns on represented models in NLP/CV/speech
Test on Nvidia 2080Ti, Batchsize=32



End-to-end Opportunity
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* Propagation automatically finds out more potential sparsity in the model with Tensor Algebra
or Tensor Scrambling, e.g., from 50% to 89.7%



Mixed Sparsity Evaluation
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SparTA achieves the significant speedup by integrating/combining different sparse optimizations

systematically

As far as we know, SparTA is the first work that fully utilizes such complex sparse patterns



Real Latency for Algorithm
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e SparTA provides the real latency for the compression algorithm to boost the algorithm
performance



Conclusion

* We treat sparsity as the first-class citizen in DNN frameworks to natively facilitate
efficient training and inference of sparse models

* We propose an end-to-end sparsity optimization system called SparTA that
e can integrates existing various sparsity optimizations systematically
« provides real end-to-end speedup for different sparsity patterns
* reveals new opportunities for sparsity at the graph-level
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Artifact available at: https://github.com/microsoft/nni/tree/sparta_artifact/sparta
Formal repo: https://github.com/microsoft/SparTA.git (will open source soon)



https://github.com/microsoft/SparTA.git

