03D 2018 PREVIEW:
MACHINE LEARNING

Shivaram Venkataraman

University of Wisconsin, Madison

Uik AlphaGo

e
)

I

Bod N\T T)N 2
J "?;"fl. a1
. ; P - "»- -

Y
. X
. ;- -
; » ﬂ
X o g
3

MACHINE LEARNING

Classification Recommendation

G
w amazon

WHAT

Inference

Dog

Dog
Training

Cat

Cat

Optimization Algorithms

arg min
fer

Data (Labels)

Loss
Function Model

Data (Examples)

DEEP LEARNING

ReLU Non-linearity

max (2 x,w;, 0)

DEEP LEARNING

¢
W

output layer

}\4.\\«
XX
.§

input layer
hidden layer 1 hidden layer 2

Stack them together!

DEEP LEARNING

7x7 conv
input g4 fiters 3x3 conv 3x3 conv 3x3 conv
: 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv
image Norm 64 filters 64 filters Norm 64 fiters 4 fiters N°"“ " 128 fiters 128 fiters Norm 128 filters 128 filters SZILT
—_ Relu Norm drop ReLu Norm dro Nom d Norm drop Sum
. Pool Q] ReLu :D out Sum m ReLu ﬂ % S“"‘ m ReLu mp sum ReLu
Norm
3x3 conv 3x3 conv 3x3conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv FC (84) Softmax
Norm Norm Relu
256 ﬁltersN 256 fiters 256 ﬁlters 256 fters Norm512 ﬁltersN - §12fitters 7o 512ﬁ|teril 512fiters o -
3 orm \ 5% orm drop Pool
- Relu drop o \ ReLu : drop Sum . ReLu ,4rop Sum £

|
[y
, RelLu Y

_/ \/ _ﬁ,/' \//'

ResNet18

Convolution
RelLU
MaxPool
Fully Connected
SoftMax

MODEL TRAINING

wFtY) — (k) _ Oszf(fw(k))

Initialize w Stochastic Gradient Descent

For many iterations:

Compute Gradient Gradient using backprop
Update model Compute Intensive!

End

MULTIPLE PREDICTIONS

Data —>m —> Prediction —

Reward
| | Robotics Train with
Reinforcement Learning Control Systems iterative

Self Driving Cars simulations

MACHINE LEARNING TAKEAWAYS

Iterative algorithms
Compute Intensive

Known operators

REGENT ML SYSTEMS

Programming Frameworks
- Naiad [SOSP 201 3]

- PowerGraph [OSDI 2012]

- Tensorflow [OSDI 2016]
Scalable Training

- Parameter Server [OSDI 2014]

- Project Adam [OSDI 2014]
Bug Hunting

- DeepXplore [SOSP 2017]

MACHINE LEARNING STACK

Goals, Challenges
LA A
AR
TensorFlow ! —4}

-
~--~~-

Heterogeneous hardware

Low latency (Avg, P99)

Resource Manager —eterogeneous jobs

Cluster Utilization

QUESTIONS TO CONSIDER

What is the target machine learning workload ?
— Data or model types

— Training vs. Inference

What is different when running ML workloads ?
— Compared to SQL queries
— Compared to web applications

Ray: A Distributed Framework for Emerging AI Applications

Philipp Moritz! Robert Nishihara! Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, Ion Stoica
University of California, Berkeley

Abstract

The next generation of Al applications will continuously
interact with the environment and learn from these inter-
actions. These applications impose new and demanding
systems requirements, both in terms of performance and
flexibility. In this paper, we consider these requirements
and present Ray—a distributed system to address them.
Ray implements a unified interface that can express both
task-parallel and actor-based computations, supported by
a single dynamic execution engine. To meet the perfor-
mance requirements, Ray employs a distributed scheduler
and a distributed and fault-tolerant store to manage the
system’s control state. In our experiments, we demon-
strate scaling beyond 1.8 million tasks per second and
better performance than existing specialized systems for
several challenging reinforcement leaming applications.

1 Introduction

and their use in prediction. These frameworks often lever-
age specialized hardware (e.g., GPUs and TPUs), with the
goal of reducing training time in a batch setting. Examples
include TensorFlow [7], MXNet [18], and PyTorch [46].

The promise of Al is, however, far broader than classi-
cal supervised learning. Emerging Al applications must
increasingly operate in dynamic environments, react to
changes in the environment, and take sequences of ac-
tions to accomplish long-term goals [8, 43]. They must
aim not only to exploit the data gathered, but also to ex-
plore the space of possible actions. These broader require-
ments are naturally framed within the paradigm of rein-

forcement learning (RL). RL deals with learning to oper-

ate continuously within an uncertain environment based
on delayed and limited feedback [56]. RL-based systems
have already yielded remarkable results, such as Google’s
AlphaGo beating a human world champion [54], and are
beginning to find their way into dialogue systems, UAVs
[42], and robotic manipulation [25, 60].

Framework for
Reinforcement
Learning

Key Challenges:
Distributed training
Heterogeneous tasks

Compiler for Deep
Learning Models

Key Challenges:
Diverse hardware
Many Optimizations

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning

Tianqi Chen', Thierry Moreau', Ziheng Jiang'2, Lianmin Zheng®, Eddie Yan'

Meghan Cowan', Haichen Shen', Leyuan Wang* 2. Yuwei Hu®, Luis Ceze', Carlos Guestrin', Arvind Krishnamurthy'
!Paul G. Allen School of Computer Science & Engineering, University of Washington

"

Abstract

There is an increasing need to bring machine learn-
ing to a wide diversity of hardware devices. Current
frameworks rely on vendor-specific operator libraries
and optimize for a narrow range of server-class GPUs.
Deploying workloads to new platforms — such as mo-
bile phones, embedded devices, and accelerators (e.g.,
FPGAs, ASICs) - requires significant manual effort.
We propose TVM, a compiler that exposes graph-level
and operator-level optimizations to provide performance
portability to deep learning workloads across diverse
hardware k-ends. TVM solves optimization chal-
lenges specific to deep learning, such as high-level op-
erator fusion, mapping to arbitrary hardware primitives,
and memory latency hiding. It also automates optimiza-
tion of low-level programs to hardware characteristics by
employing a novel, learning-based cost modeling method
for rapid exploration of code optimizations. Experimen-
tal results show that TVM delivers performance across
hardware back-ends that are competitive with state-of-
the-art, hand-tuned libraries for low-power CPU, mo-

bile GPU, and server-class GPUs. We also demonstrate
UL L

2 AWS, *Shanghai Jiao Tong University, *UC Davis, *Comell

Memory Subsystem Architecture
cPu Py ™Y
BETE ——
I BN g e
X5 510 50 50 o O3 0 O
ety managed maed explaity managed
Compute Primitive
- -
- LLLL} - -
- - 1)
L -
scalr vector tonsor

Figure 1: CPU, GPU and TPU-like accelerators re-
quire different on-chip memory architectures and com-
pute primitives. This divergence must be addressed when
generating optimized code.

terms of memory organization, compute functional units,
ete., as shown in Figure 1.

Current DL frameworks, such as TensorFlow, MXNet,
Caffe, and PyTorch, rely on a computational graph in-
termediate representation to implement optimizations,
e.g., auto differentiation and dynamic memory man-
agement [3,4,9]. Graph-level optimizations, however,

Gandiva: Introspective Cluster Scheduling for Deep Learning

Wencong Xiao®

*, Romil Bhardwaj**, Ramachandran Ramjee*, Muthian Sivathanu*, Nipun Kwatra*,

Zhenhua Han®*, Pratyush Patel*, Xuan Peng**, Hanyu Zhao®*, Quanlu Zhang*, Fan Yang*, Lidong Zhou*

"Beihang University, *Microsoft Research, °The University of Hong Kong,

b 4 . . - . 8 . . .
*Huazhong University of Science and Technology, * Peking University

Abstract

We introduce Gandiva, a new cluster scheduling frame-
work that utilizes domain-specific knowledge to improve
latency and efficiency of training deep learning models
in a GPU cluster.

One key characteristic of deep learning is feedback-
driven exploration, where a user often runs a set of jobs
(or a multi-job) to achieve the best result for a specific
mission and uses early feedback on accuracy to dynam-
ically prioritize or kill a subset of jobs; simultaneous
early feedback on the entire multi-job is critical. A sec-
ond characteristic is the heterogeneity of deep learning
Jjobs in terms of resource usage, making it hard to achieve
best-fit a priori. Gandiva addresses these two challenges
by exploiting a third key characteristic of deep learn-
ing: intra-job predictability, as they perform numerous
repetitive iterations called mini-batch iterations. Gan-
diva exploits intra-job predictability to time-slice GPUs
efficiently across multiple jobs, thereby delivering low-
latency. This predictability is also used for introspect-
ing job performance and dynamically migrating jobs to
better-fit GPUs, thereby improving cluster efficiency.

An increasingly popular computing trend over the last
few years is deep learning [32]; it has already had signif-
icant impact; e.g., on widely-used personal products for
voice and image recognition, and has significant poten-
tial to impact businesses. Hence, it is likely to be a vital
and growing workload, especially in cloud data centers.

However, deep learning is compute-intensive and
hence heavily reliant on powerful but expensive GPUs;
a GPU VM in the cloud costs nearly 10x that of a regu-
lar VM. Cloud operators and large companies that man-
age clusters of tens of thousands of GPUs rely on cluster
schedulers to ensure efficient utilization of the GPUs.

Despite the importance of efficient scheduling of deep
learning training (DLT) jobs, the common practice to-
day [12, 28] is to use a traditional cluster scheduler, such
as Kubernetes [14] or YARN [50], designed for handling
big-data jobs such as MapReduce [17]: a DLT job is
treated simply as yet another big-data job that is allo-
cated a set of GPUs at job startup and holds exclusive
access to its GPUs until completion.

In this paper, we present Gandiva, a new scheduling
framework that demonstrates that a significant increase

PR P . s . o

Cluster Scheduler for
Deep Learning Jobs

Key Challenges:
Prioritize Accuracy
Heterogeneous Jobs

System for Inference

Key Challenges:
Increasing Utilization
P99 Latency

PRETZEL: Opening the Black Box of Machine Learning
Prediction Serving Systems

Yunseong Lee
Seoul National University

Marco Domenico Santambrogio
Politecnico di Milano

Abstract

Machine Learning models are often composed of
pipelines of transformations. While this design allows to
efficiently execute single model components at training-
time, prediction serving has different requirements such
as low latency, high throughput and graceful performance
degradation under heavy load. Current prediction serv-
ing systems consider models as black boxes, whereby
prediction-time-specific optimizations are ignored in fa-
vor of ease of deployment. In this paper, we present
PRETZEL, a prediction serving system introducing a
novel white box architecture enabling both end-to-end
and multi-model optimizations. Using production-like
model pipelines, our experiments show that PRETZEL is
able to introduce performance improvements over differ-
ent dimensions; compared to state-of-the-art approaches
PRETZEL is on average able to reduce 99th percentile la-
tency by 5.5x while reducing memory footprint by 25 x,
and increasing throughput by 4.7 x.

Alberto Scolari
Politecnico di Milano

Markus Weimer

Byung-Gon Chun
Seoul National University

Matteo Interlandi

Microsoft Microsoft

“This is a nice product”

Word
Ngram
Logistic
Regressio|

Positive vs. Negative

Figure 1: A Sentiment Analysis (SA) pipeline consisting
of operators for featurization (ellipses), followed by a ML
model (diamond). Tokenizer extracts tokens (e.g., words)
from the input string. Char and Word Ngrams featurize
input tokens by extracting n-grams. Concat generates a
unique feature vector which is then scored by a Logistic
Regression predictor. This is a simplification: the actual
DAG contains about 12 operators.

sive iterative algorithms; successively, trained pipelines

are used for inference to generate predictions through
the estimated model parameters. When trained pipelines

CONCLUSION

Machine learning workloads present new systems challenges!

For every paper, consider
- Workload properties
- ML goals / targets
- What is different from SQL/web apps

