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Barnes Hut N-Body Simulation

N Interacting Bodies (Stars,
e Molecules)

O * At each step
— Compute force
¢ o e Acting on each body
* From all other bodies
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Space Subdivision Tree
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* |nternal node contains center of mass for subtree
e Center of mass approximation for distant bodies

* Changes N2 algorithm into N log N algorithm



Barnes-Hut Algorithm
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Build space subdivision tree
Use tree to compute forces acting on each body

1)
2)
3) Move bodies
4)



Tree Construction Algorithm
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2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary
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Parallel Tree Construction Algorithm, Version 1 —
No Synchronization, Just Insert Bodies in Parallel
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Standard Solution

* Add synchronization
— Complicate program
— Add synchronization overhead
— Add space overhead
— Maybe contention, even deadlock too

 We aren’t going to do this



Parallel Tree Construction Algorithm, Version 2 —
No Synchronization, No Crash!
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Parallel Tree Construction Algorithm, Version 2 —
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Effect of Unsynchronized
Construction
Always produces a tree that force

computation calculation can use
But tree may not contain all bodies

— Forces computed as if dropped bodies don’t exist
— Get an approximate force computation

— But force computation is already approximate
because of center of mass approximation

Preserves integrity
May affect accuracy



Parallel Tree Construction Options

* Unsynchronized
— Data races
— Always produces a usable tree, but may drop bodies
* Preserves integrity of computation
* May affect accuracy
* Tree Locking (standard approach)
— No data races, no dropped bodies
— Lots of synchronization, lots of contention at top of tree
* Update Locking (synchronize updates but not reads)
— Data races, no dropped bodies
— Some synchronization, little contention
— Complex, scary algorithm



Accuracy Evaluation

* Need a comparison point

* Full N2 computation too expensive

 Compare with hyperaccurate version
— Uses a center of mass approximation

—But goes deeper into the tree before using
the center of mass approximation

— S0 more accurate



Accuracy Metric

e Start with two corresponding configurations

— Reference (hyperaccurate)

— Comparison (tree locking, update locking, unsynchronized)
 Compute sum of distances between corresponding bodies
* Divide sum by distance between corners of bounding box



Accuracy Result

* Accuracy metric between
— Hyperaccurate version and
— All other versions
— All other numbers of processors

* 15 1.02% (to three significant digits)
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Accuracy Result in Context

* Difference between hyperaccurate and
synchronized version is
two orders of magnitude larger than
difference between synchronized and
unsynchronized versions

* Changing center of mass approximation has
an accuracy effect
two orders of magnitude more than
removing synchronization



Performance Evaluation

* Implemented different versions
— Tree locking
— Update locking
— Unsynchronized
— Evaluated performance of different versions

 Measured speedup over sequential tree
construction algorithm



Performance of Parallel Tree Construction Algorithms
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Key Technical Concepts and Results

e Safe approximate unsynchronized data structures
— Look just like standard sequential data structures
— Give programmer sense of security and comfort
— Building blocks in paper

e Accuracy evaluation methodology
— To evaluate effect of unsynchronized data structures
— Adjust accepted accuracy knobs

— Compare with effect of removing synchronization

* Evidence shows programs are oversynchronized



Bigger Picture

Field has traditionally aspired to perfection
But perfection is increasingly unavailable

— Huge systems, huge data sets

— Something always broken

Software is inherently resilient and malleable
Enables more mature and productive approaches
Goal is acceptability, not perfection

— Integrity (program does not crash)

— Accuracy (accurate enough, often enough)
— End-to-end perspective

Opens up new, counterintuitive possibilities



