Unsynchronized Techniques for
Approximate Parallel Computing

Martin Rinard
MIT EECS, MIT CSAIL
Massachusetts Institute of Technology
Cambridge, MA 02139

Barnes Hut N-Body Simulation

- N Interacting Bodies (Stars,

Molecules)
A / * At each step
x’ — Compute force
ﬁ * Acting on each body

* From all other bodies

Barnes Hut N-Body Simulation

N Interacting Bodies (Stars,
e Molecules)

O * At each step
— Compute force
¢ o e Acting on each body
* From all other bodies
— Use forces to move bodies
* Repeat

Space Subdivision Tree

o Inr\tligi_’ ‘I%I\F]
e e &

* |nternal node contains center of mass for subtree
e Center of mass approximation for distant bodies

* Changes N2 algorithm into N log N algorithm

Barnes-Hut Algorithm

. E?\fm

Build space subdivision tree
Use tree to compute forces acting on each body

1)
2)
3) Move bodies
4)

Tree Construction Algorithm

| Ak

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Tree Construction

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Parallel Tree Construction Algorithm, Version 1 —
No Synchronization, Just Insert Bodies in Parallel

| wbEr

® O
e ® Data Races
5 Corruption
Crash!

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Standard Solution

* Add synchronization
— Complicate program
— Add synchronization overhead
— Add space overhead
— Maybe contention, even deadlock too

 We aren’t going to do this

Parallel Tree Construction Algorithm, Version 2 —
No Synchronization, No Crash!

K

O o Potential Outcome:
Drop ®

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Parallel Tree Construction Algorithm, Version 2 —
No Synchronization, No Crash!

ik

@ [
© Dropped: @ @

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Parallel Tree Construction Algorithm, Version 2 —
No Synchronization, No Crash!

ik

O o
< Dropped: @

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Parallel Tree Construction Algorithm, Version 2 —
No Synchronization, No Crash!

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Parallel Tree Construction Algorithm, Version 2 —
No Synchronization, No Crash!

A

@ ® LT GLIT]
|
O O

1) Drop bodies into the tree from the top
2) Bodies percolate down the tree

3) Insert each body in correct position
4) Add internal nodes as necessary

Effect of Unsynchronized
Construction
Always produces a tree that force

computation calculation can use
But tree may not contain all bodies

— Forces computed as if dropped bodies don’t exist
— Get an approximate force computation

— But force computation is already approximate
because of center of mass approximation

Preserves integrity
May affect accuracy

Parallel Tree Construction Options

* Unsynchronized
— Data races
— Always produces a usable tree, but may drop bodies
* Preserves integrity of computation
* May affect accuracy
* Tree Locking (standard approach)
— No data races, no dropped bodies
— Lots of synchronization, lots of contention at top of tree
* Update Locking (synchronize updates but not reads)
— Data races, no dropped bodies
— Some synchronization, little contention
— Complex, scary algorithm

Accuracy Evaluation

* Need a comparison point

* Full N2 computation too expensive

 Compare with hyperaccurate version
— Uses a center of mass approximation

—But goes deeper into the tree before using
the center of mass approximation

— S0 more accurate

Accuracy Metric

e Start with two corresponding configurations

— Reference (hyperaccurate)

— Comparison (tree locking, update locking, unsynchronized)
 Compute sum of distances between corresponding bodies
* Divide sum by distance between corners of bounding box

Accuracy Result

* Accuracy metric between
— Hyperaccurate version and
— All other versions
— All other numbers of processors

* 15 1.02% (to three significant digits)

Visually

Unsynchronized

Hyperaccurate . AL

— Update

Tree |ocking
Locking

Accuracy Result in Context

* Difference between hyperaccurate and
synchronized version is
two orders of magnitude larger than
difference between synchronized and
unsynchronized versions

* Changing center of mass approximation has
an accuracy effect
two orders of magnitude more than
removing synchronization

Performance Evaluation

* Implemented different versions
— Tree locking
— Update locking
— Unsynchronized
— Evaluated performance of different versions

 Measured speedup over sequential tree
construction algorithm

Performance of Parallel Tree Construction Algorithms
10

8 8
5
-
S 6 =*-Unsynchronized
0p
O
S 4 ’ -+pdate Locking
S -*-Tree Locking
B 2
0,
Q.
7))
H—.\.—.
O .
0 4 8 12 16

Number of Processors

Key Technical Concepts and Results

e Safe approximate unsynchronized data structures
— Look just like standard sequential data structures
— Give programmer sense of security and comfort
— Building blocks in paper

e Accuracy evaluation methodology
— To evaluate effect of unsynchronized data structures
— Adjust accepted accuracy knobs

— Compare with effect of removing synchronization

* Evidence shows programs are oversynchronized

Bigger Picture

Field has traditionally aspired to perfection
But perfection is increasingly unavailable

— Huge systems, huge data sets

— Something always broken

Software is inherently resilient and malleable
Enables more mature and productive approaches
Goal is acceptability, not perfection

— Integrity (program does not crash)

— Accuracy (accurate enough, often enough)
— End-to-end perspective

Opens up new, counterintuitive possibilities

