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This Talk
We introduce an  

attack called  
model inversion

New Attack

End-to-End Study
Differential 

privacy prevents  
the attack

Risk of adverse 
outcomes is too 

high with DP

Extract patients’ genetics 
from pharmacogenetic 

dosing models

Genomic Privacy

Conclusion
Current methods fail to balance privacy and utility
This really matters when inaccuracy is expensive
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Warfarin Dosing
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Warfarin is one of the most well-studied targets in pharmacogenetics

100+ articles to date

Warfarin is the most popular anticoagulant in use today

Anticoagulants are used to prevent stroke and clotting-related incidents



Warfarin is notoriously difficult to dose correctly

Low dose High dose

The dangers of being wrong
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The IWPC Warfarin Model
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5700 patients from  
21 sites in 6 countries, 4 continents
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Population!
Dataset

Learning !
Algorithm

Trained!
Model

age height weight race history vkorc1 cyp2c9 dose

patient demographicsmedications, comorbidities, smoking status, …relevant genotypetarget outcome: stable warfarin dose

Learning !
Algorithm

y = ax + b
The IWPC found ordinary linear regression!

to be the best learning algorithm 

indepdendent variables 
(inputs)

depdendent variable 
(output)

The IWPC Warfarin Model



Pharmacogenetic Warfarin Dosing
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Pharmacogenetic Privacy
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Pharmacogenetic Privacy
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CYP2C9!
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race, age,!
weight, !

meds, …

f(x)
Linear Model

Warfarin!
Dose

CYP2C9!
VKORC1

age height weight race history vkorc1 cyp2c9 dose

50-60 176.2 185.7 asian cancer 42.0A/G *1/*3
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We call this attack model inversion

Photo by Kim Manley Ort (CC BY-NC 2.0)



13

This Talk
We introduce an  

attack called  
model inversion

New Attack

End-to-End Study
Differential 

privacy prevents  
the attack

Risk of adverse 
outcomes is too 

high with DP

Extract patients’ genetics 
from pharmacogenetic 

dosing models

Genomic Privacy

Conclusion
Current methods fail to balance privacy and utility
This really matters when inaccuracy is expensive



basic demographics

black-box access to model
stable warfarin dose

marginal priors on patient distribution

Goal: infer the patient’s genetic markers from this information

Model Inversion
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VKORC1

12%

24%

36%

Genotype
A/A A/G G/G

36%34%
30%

… with better accuracy than the given “baseline” priors



15

Our Model Inversion
1. Compute all values that agree with given information

2. Find the most likely values among those that remain

age height weight race history vkorc1 cyp2c9 dose

50-59 176.53 144.2 white cancer A/G *1/*1 42.0
50-59 176.53 144.2 white heart G/G *1/*3 42.0

f(x)

50-59 176.53 144.2 white diabetes A/A *2/*3 42.0

Use the marginal probabilities, model output to approximate this quantity

49.7 p=0.23
p=0.75
p=0.01

42.0

39.2
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This algorithm is optimal given the!
available information



VKORC1 CYP2C9
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“baseline” means guessing without the model
“Ideal” is a classifier trained to predict the genotype

Everything but genotype

Just “basic” demographics

Much higher than baseline guessing

Only 5% lower than ideal prediction

Results
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“baseline” means guessing without the model
“Ideal” is a classifier trained to predict the genotype

Everything but genotype

Just “basic” demographics

Much higher than baseline guessing

Only 5% lower than ideal prediction

Results

Model inversion does nearly as well as a linear model!
trained from the original data
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Seeking a Remedy
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We examine the use of differential privacy for preventing MI

Photo by Kim Manley Ort, https://flic.kr/p/m2UBWH (CC BY-ND 2.0)

Any output should be about as likely 
regardless of whether or not I am in the dataset

Clean, provable guarantee

Most DP mechanisms “add noise” according to privacy budget

MI is a problem, so how can we prevent it?

Evidence that this protects attributes in linear models 
(Kasiviswanathan et al., SODA 2013)

Pr[K(D) = s] ≤ exp(𝝴) × Pr[K(D’) = s]
For D, D’ differing in one row,



Seeking a Remedy
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Goal: see if a “reasonable” privacy budget solves the problem

End-to-End Study
Find budget that 
prevents model 

inversion

Evaluate risk of 
adverse events 

at these budgets

Private Linear Regression Private Histograms
[Zhang et al., VLDB 2012] [Vinterbo, ECML-PKDD 2012]

Run model inversion experiments from before on DP models



Clinical Efficacy
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End-to-End Study
Find budget that 
prevents model 

inversion

Evaluate risk of 
adverse events 

at these budgets

Simulate clinical trials to make this calculation
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Simulated Clinical Trials

Days 2-90

Simulate body’s response 
using PK/PD models
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Enroll!
Patient

Initial!
Dose

Measure!
Response

Modify !
Dose

Sample patient from 
IWPC validation set

Day 1 Days 1-2

standard fixed dose 
!
private model (Hamberg et al., Clin. Pharm. 

Theory, 2007)

Days 3-90

Defined in previous 
clinical trials
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End-to-End Results, Private LR
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Still statistically 
significant

Relative to fixed-dose protocol

Mortality Risk vs. MI Accuracy, Private LR
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End-to-End Results, Private LR
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We did not observe a budget that significantly prevented!
model inversion, without introducing risk over fixed dosing.

Photo by mgstanton (CC BY-NC-ND 2.0)
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Conclusion
Current methods fail to balance privacy and utility
This really matters when inaccuracy is expensive


