The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links

Jiahao Cao, Qi Li, Renjie Xie, Kun Sun, Guofei Gu, Mingwei Xu, and Yuan Yang

Outline

- Background
- Overview of the CrossPath Attack
- Challenges
- Adversarial Path Reconnaissance
- Evaluation
- Possible Defense
- Conclusion

Software-Defined Networking (SDN)

- Software-Defined Networking
 - separate control and data planes
 - take centralized network control
 - enable network programmability
- SDN Control Channels
 - deliver all control traffic
 - failure results in serious disasters
 - security and reliability are vital

Three-Layer SDN Architecture

CrossPath Attack

- We uncover a new attack to disrupt SDN control channels
 - leverage shared links between paths of control and data traffic
 - allow data traffic to disrupt control traffic
 - disrupt a wide range of SDN functionalities

- Threat Model
 - an attacker compromises a host inside the target SDN
 - the target SDN applies in-band control

A Toy Example

• A malicious host sends data traffic to congest shared links delivering

Challenges

- How to find a data path that contains shared links?
- Randomly choose a data path to attack?
 - low success ratio due to only a few shared links

Assume m switches in total,

- $O(m^2)$ total links
- O(m) shared links connecting them with the controller
- Apply existing scanning tools to find such a data path?
 - ineffectiveness due to unique SDN data plane

SDN

- No IP addresses in switch ports
- No TTL decrease for packets passing SDN switches

Adversarial Path Reconnaissance

• Key Observation: **control path delays** can be an **indicator** on whether a data path contains shared links

- Control Path Delay between S_2 and C: $T_{S_2,C}$
- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \, ms$ due to congestion

Adversarial Path Reconnaissance

• Key Observation: **control path delays** can be an **indicator** on whether a data path contains shared links

- Control Path Delay between S_2 and C: $T_{S_2,C}$
- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \, ms$ due to congestion
- Case 2: a data path contains no shared links
 - $T_{S_2,C} = 10 \ ms$

Adversarial Path Reconnaissance

• Key Observation: **control path delays** can be an **indicator** on whether a data path contains shared links

- Control Path Delay between S_2 and C: $T_{S_2,C}$
- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \, ms$ due to congestion
- Case 2: a data path contains no shared links
 - $T_{S_2,C} = 10 \ ms$

Control Path Delay Measurement

- How to measure control path delays with an end host?
 - Leverage side effects of dynamic flow rule installation to measure them

Control path delays can be calculated based on the first two packets of a new flow

Reconnaissance Algorithm

Algorithm

- Optimization
 - Improve the accuracy of reconnaissance
 - e.g., reduce the impacts of network jitters
 - Improve the efficiency of reconnaissance
 - e.g., enable concurrent reconnaissance

Experiment Setup

- A real SDN testbed consists of
 - commercial hardware SDN switches
 - an open source controller, Floodlight
 - physical hosts connecting to switches
- We replay five types of real traffic trace
 - traffic of two data centers
 - traffic of one university
 - traffic of one internet backbone
 - traffic of one computer lab
- We evaluate
 - the accuracy of adversarial path reconnaissance
 - the degradation ratio of control traffic

Accuracy and Effectiveness

reconnaissance accuracy

control traffic degradation

DC: datacenter traffic, IB: internet backbone traffic, UNIV: university traffic, LAB: our computer laboratory traffic

Attack Impacts on Network Functionalities

• Almost all SDN applications depend on control messages delivered in control channels to enable network functionalities

- We measure the impacts on three popular SDN APPs
 - ARP Proxy
 - Reactive Routing
 - Load Balancer

ARP Proxy

• The performance of ARP Proxy significantly degrades

ARP throughput

ARP query delay

Reactive Routing

• Reactive Routing generates various anomalies

success ratio of rule installation

host migration time

Reactive Routing

• Reactive Routing generates various anomalies

```
17:37:46.344 INFO [n.f.t.TopologyInstance] Route [id=RouteId [src=1c:48:cc:37:ab:a0:a8:41 dst=9d:54:cc:37:ab:a0:a8:41], switchPorts=[[id=1c:48:cc:37:ab:a0:a8:41, port=37], [id=9d:54:cc:37:ab:a0:a8:41, port=31]]]
17:38:01.62 INFO [n.f.1.i.LinkDiscoveryManager] Inter-switch link removed: Link [src=a4:e7:cc:37:ab:a0:a8:41 outPort=38, dst=9d:54:cc:37:ab:a0:a8:41, inPort=42, latency=6]
17:38:01.95 INFO [n.f.t.TopologyManager] Recomputing topology due to: link-discovery-updates
17:38:01.345 INFO [n.f.t.TopologyInstance] Route [id=RouteId [src=1c:48:cc:37:ab:a0:a8:41 dst=9d:54:cc:37:ab:a0:a8:41], switchPorts=[[id=1c:48:cc:37:ab:a0:a8:41, port=32], [id=a4:e7:cc:37:ab:a0:a8:41, port=36], [id=a4:e7:cc:37:ab:a0:a8:41, port=38], [id=9d:54:cc:37:ab:a0:a8:41, port=42]]]
```

A routing path is evicted due to a deactivated link

Load Balancer

Load balancer incorrectly balances traffic among servers

without the attack

with the attack

Possible Defense

- Deliver control traffic with a high priority
 - implementation with priority queue or weighted round robin queue
- Proactively reserve bandwidth for control traffic
 - implementation with meter tables

Defense Strategy	Rule	Match	Actions
Control traffic delivery with high priority ¹	#1	control flows	OutPort(x), , SetQueue(ID=highPriQueue)
	#2	data flows	OutPort(x),, SetQueue(ID=lowPriQueue)
Proactive bandwidth reservation for control traffic ²	#1	data flows	OutPort(x),, SetMeter(ID=RateLimit)

¹ It requires SDN switches to support PQ or WRR queuing mechanism.

² It is used when SDN switches fail to enable PQ or WRR mechanism.

Conclusion

• Data traffic passing shared links can congest control traffic to disrupt SDN control channels

• A data path containing shared links can be found by measuring control path delays and leveraging side effects of dynamic rule installation

• Network administrators should enable priority queue or reserve bandwidth for SDN control traffic to protect control channels

Thank you!

Jiahao Cao caojh15@mails.tsinghua.edu.cn

Backup: Theoretical Analysis

• The number of explored data paths to find a target data path containing a shared link

$$E(X) = \sum_{k=1}^{n-\gamma} \frac{k\gamma}{n-k} \prod_{j=0}^{k-2} (1 - \frac{\gamma}{n-1-j})$$

n: The total number of hosts in SDN

 γ : The total number of data paths containing shared links, depending on the topology and the routing decision

Backup: Coverage

- Simulation among 261 real network topologies
- Connections between the controller and switches
 - shortest path (SP)
 - minimum spanning tree (MST)
 - random (RS)

