
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Usenix Security 2019, Santa Clara
August 16, 2019

Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz

Chair for Systems Security
Ruhr-Universität Bochum

Motivation

Motivation

Trusted Party

•

Untrusted Party

•

• But what about automated bug finding tools?

2

Motivation

Trusted Party
• Can find bugs

Untrusted Party
• Can’t find bugs

• But what about automated bug finding tools?

2

Motivation

Trusted Party
• Can examine code =⇒ Can find bugs

Untrusted Party
• Can’t examine code =⇒ Can’t find bugs ?

• But what about automated bug finding tools?

2

Motivation

Trusted Party
• Can examine code =⇒ Can find bugs

Untrusted Party
• Can’t examine code =⇒ Can’t find bugs ?

• But what about automated bug finding tools?

2

Impeding Fuzzing Audits

Impeding Fuzzing Audits

• Analyze diverse set of fuzzers

• Find assumptions fuzzers need to make
• Invalidate those assumptions

4

Impeding Fuzzing Audits

• Analyze diverse set of fuzzers
• Find assumptions fuzzers need to make

• Invalidate those assumptions

4

Impeding Fuzzing Audits

• Analyze diverse set of fuzzers
• Find assumptions fuzzers need to make
• Invalidate those assumptions

4

Finding Assumptions

5

Demo Application

main

in == "ELF"

"not ELF" crash

6

Assumptions

(A) Coverage Yields Relevant
Feedback

Coverage Yields Relevant Feedback

Blind Fuzzer

• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer

• Mutate input
• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9

Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input

• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input

• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9

Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input

• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9

Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input
• ... or if new coverage is found

• If so, add input to queue
• New Coverage =⇒ New Behavior

9

Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue

• New Coverage =⇒ New Behavior

9

Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9

Coverage Yields Relevant Feedback

main

in == "ELF"

"not ELF" crash
10

(B) Crashes Can Be Detected

Crashes Can Be Detected

main

in == "ELF"

"not ELF" crash

exit()
12

(C) Many Executions Per Second

Many Executions Per Second

Why is AFL so good?

• No ”human knowledge” about target necessary

• Super fast implementation (thousands of executions per second)

• → As long as we are fast, we don’t need to be smart.

14

Many Executions Per Second

Why is AFL so good?

• No ”human knowledge” about target necessary

• Super fast implementation (thousands of executions per second)

• → As long as we are fast, we don’t need to be smart.

14

Many Executions Per Second

Why is AFL so good?

• No ”human knowledge” about target necessary

• Super fast implementation (thousands of executions per second)

• → As long as we are fast, we don’t need to be smart.

14

Many Executions Per Second

Why is AFL so good?

• No ”human knowledge” about target necessary

• Super fast implementation (thousands of executions per second)

• → As long as we are fast, we don’t need to be smart.

14

Many Executions Per Second

Bad approach

• Slow down application
• But: real-world usage also slows down

15

Many Executions Per Second

Bad approach
• Slow down application

• But: real-world usage also slows down

15

Many Executions Per Second

Bad approach
• Slow down application
• But: real-world usage also slows down

15

Many Executions Per Second

Bad approach
• Slow down application
• But: real-world usage also slows down

Better approach

• Slow down application ...
• ... only when it’s being fuzzed?

15

Many Executions Per Second

Bad approach
• Slow down application
• But: real-world usage also slows down

Better approach
• Slow down application ...

• ... only when it’s being fuzzed?

15

Many Executions Per Second

Bad approach
• Slow down application
• But: real-world usage also slows down

Better approach
• Slow down application ...
• ... only when it’s being fuzzed?

15

Many Executions Per Second

What is the implication of being fuzzed?

• Most inputs will be malformed

• But in real-world scenarios, most inputs are well-formed

Solution: slow down application if input is malformed

16

Many Executions Per Second

What is the implication of being fuzzed?

• Most inputs will be malformed

• But in real-world scenarios, most inputs are well-formed

Solution: slow down application if input is malformed

16

Many Executions Per Second

What is the implication of being fuzzed?

• Most inputs will be malformed

• But in real-world scenarios, most inputs are well-formed

Solution: slow down application if input is malformed

16

Many Executions Per Second

What is the implication of being fuzzed?

• Most inputs will be malformed

• But in real-world scenarios, most inputs are well-formed

Solution: slow down application if input is malformed

16

Many Executions Per Second

main

in == "ELF"

"not ELF" crash

exit()sleep()
17

(D) Constraints Are Solvable with
Symbolic Execution

Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19

Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19

Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19

Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19

Constraints Are Solvable with Symbolic Execution

How to break this assumption? Two techniques:

• Replace constants comparisons by hash comparisons
• Put input through encryption and decryption before using

20

Constraints Are Solvable with Symbolic Execution

How to break this assumption? Two techniques:

• Replace constants comparisons by hash comparisons

• Put input through encryption and decryption before using

20

Constraints Are Solvable with Symbolic Execution

How to break this assumption? Two techniques:

• Replace constants comparisons by hash comparisons
• Put input through encryption and decryption before using

20

Constraints Are Solvable with Symbolic Execution

main

in == "ELF"

"not ELF" crash

exit()sleep()

h(in) == a27b...

dec(enc(in))

21

Evaluation

Dummy Application

23

Coverage Evaluation

Vuzzer AFL Hongg QSYM

1000

2000

3000

4000

5000

6000

#
B

ra
n

ch
e

s
co

v
e

re
d

Disabled

Vuzzer AFL Hongg QSYM

Enabledob jd u m pPlain Protected

objdump

24

Conclusion

• Systematic analysis reveals: contemporary fuzzers rely on four core assumptions

• Coverage Yields Relevant Feedback

• Crashes Can Be Detected

• Many Executions Per Second

• Constraints Are Solvable With Symbolic Execution

• AntiFuzz breaks these assumptions to impede fuzzing attempts

• https://github.com/RUB-SysSec/antifuzz

25

https://github.com/RUB-SysSec/antifuzz

Conclusion

• Systematic analysis reveals: contemporary fuzzers rely on four core assumptions

• Coverage Yields Relevant Feedback

• Crashes Can Be Detected

• Many Executions Per Second

• Constraints Are Solvable With Symbolic Execution

• AntiFuzz breaks these assumptions to impede fuzzing attempts

• https://github.com/RUB-SysSec/antifuzz

25

https://github.com/RUB-SysSec/antifuzz

Conclusion

• Systematic analysis reveals: contemporary fuzzers rely on four core assumptions

• Coverage Yields Relevant Feedback

• Crashes Can Be Detected

• Many Executions Per Second

• Constraints Are Solvable With Symbolic Execution

• AntiFuzz breaks these assumptions to impede fuzzing attempts

• https://github.com/RUB-SysSec/antifuzz

25

https://github.com/RUB-SysSec/antifuzz

Conclusion

• Systematic analysis reveals: contemporary fuzzers rely on four core assumptions

• Coverage Yields Relevant Feedback

• Crashes Can Be Detected

• Many Executions Per Second

• Constraints Are Solvable With Symbolic Execution

• AntiFuzz breaks these assumptions to impede fuzzing attempts

• https://github.com/RUB-SysSec/antifuzz

25

https://github.com/RUB-SysSec/antifuzz

Thank You

Q & A

26

