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Finding Assumptions
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Demo Application

main

in == "ELF" 

"not ELF" crash
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Assumptions



(A) Coverage Yields Relevant
Feedback
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Blind Fuzzer

• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer

• Mutate input
• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9



Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input

• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input

• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9



Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input

• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9



Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input
• ... or if new coverage is found

• If so, add input to queue
• New Coverage =⇒ New Behavior

9



Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue

• New Coverage =⇒ New Behavior

9



Coverage Yields Relevant Feedback

Blind Fuzzer
• Mutate input
• See if it crashes with given input

Coverage-guided Fuzzer
• Mutate input
• See if it crashes with given input
• ... or if new coverage is found
• If so, add input to queue
• New Coverage =⇒ New Behavior

9



Coverage Yields Relevant Feedback

main

in == "ELF" 

"not ELF" crash
10



(B) Crashes Can Be Detected



Crashes Can Be Detected

main

in == "ELF" 

"not ELF" crash

exit()
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(C) Many Executions Per Second



Many Executions Per Second

Why is AFL so good?

• No ”human knowledge” about target necessary

• Super fast implementation (thousands of executions per second)

• → As long as we are fast, we don’t need to be smart.
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Bad approach

• Slow down application
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Many Executions Per Second

What is the implication of being fuzzed?

• Most inputs will be malformed

• But in real-world scenarios, most inputs are well-formed

Solution: slow down application if input is malformed
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Many Executions Per Second

main

in == "ELF" 

"not ELF" crash

exit()sleep()
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(D) Constraints Are Solvable with
Symbolic Execution



Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19



Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19



Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19



Constraints Are Solvable with Symbolic Execution

Why use symbolic execution?

• Some constraints are too hard to solve via random mutations

• Let’s get help from symbolic execution

Assumption: some constraints are too hard to be solved by random mutations alone,
but could be solved by symbolic execution

19



Constraints Are Solvable with Symbolic Execution

How to break this assumption? Two techniques:

• Replace constants comparisons by hash comparisons
• Put input through encryption and decryption before using
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Constraints Are Solvable with Symbolic Execution

main

in == "ELF"

"not ELF" crash

exit()sleep()

h(in) == a27b...

dec(enc(in))
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Evaluation



Dummy Application
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Coverage Evaluation
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Conclusion

• Systematic analysis reveals: contemporary fuzzers rely on four core assumptions

• Coverage Yields Relevant Feedback

• Crashes Can Be Detected

• Many Executions Per Second

• Constraints Are Solvable With Symbolic Execution

• AntiFuzz breaks these assumptions to impede fuzzing attempts

• https://github.com/RUB-SysSec/antifuzz
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Thank You

Q & A
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