

Terminal Brain Damage:

Exposing the Graceless Degradation in Deep Neural Networks under Hardware Fault Attacks

Sanghyun Hong¹, Pietro Frigo², Yiğitcan Kaya¹, Cristiano Guiffrida², Tudor Dumitraș¹

¹University of Maryland, College Park, ²Vrije Universiteit Amsterdam

1990: Optimal Brain Damage – Graceful Degradations

: we can remove 60% of model parameters, without the accuracy drop

DNN's Resilience – False Sense of Security

- **Techniques** that rely on the *graceful degradation*
 - Parameter pruning¹: to reduce the inference cost
 - **Parameter quantization**²: to compress the network size
 - Blend noises to parameters³: to improve the robustness
- **Prior work** showed it is *difficult to cause the accuracy drop*
 - Indiscriminate poisoning⁴: blend a lot of poisons ≈ 11% drop
 - Storage media errors⁵: a lot of random bit errors ≈ 5% drop
 - Hardware fault attacks^{6,7}: a lot of random faults ≈ 7% drops

They focus on the best-case or the average-case perturbations

What is the **WORST-CASE perturbation** (a bit-flip) that inflicts a **SIGNIFICANT** accuracy drop exceeding 10%?

Illustration: How DNN Computes

• Accuracy: 98.53%

Prior Work: Optimal Brain Damage

Accuracy: 98.53% (0% drop)

Prior Work: Hardware Fault Attacks

• Accuracy: 98.53%

Prior Work: Hardware Fault Attacks

Accuracy: 93.53% (5% drop)

Can We Find a Worst-case Bit-flip?

Accuracy: 57.52% (41.01% drop)

Research Questions

- **RQ-1**: How vulnerable are DNNs to a single bit-flip?
- **RQ-2**: What properties influence this vulnerability?
- **RQ-3**: Can an attacker exploit this vulnerability?
- **RQ-4**: Can we utilize DNN-level mechanisms for mitigation?

Research Questions

- **RQ-1**: How vulnerable are DNNs to a single bit-flip?
- **RQ-2**: What properties influence this vulnerability?
- **RQ-3**: Can an attacker exploit this vulnerability?
- **RQ-4**: Can we utilize DNN-level mechanisms for mitigation?

RQ-1: How Vulnerable are DNNs to a Bit-flip?

- Metric
 - Relative Accuracy Drop [RAD] =

$$\frac{(acc_{clean} - acc_{corrupted})}{acc_{clean}}$$

- Methodology
 - Flip (0 \rightarrow 1 and 1 \rightarrow 0) each bit in all parameters of a model
 - Measure the RAD over the entire validation set, each time
 - Achilles bit: when the bit flips, the flip inflicts RAD > 10%
- Vulnerability
 - Max RAD: the maximum RAD that an Achilles bit can inflict
 - Ratio: the percentage of vulnerable parameters in a model

RQ-1: Vulnerability Analysis in MNIST

Network	Acc.	# Params	Max RAD	Ratio
B(ase)	95.71	21,840	98 %	50%
B-Wide	98.46	85,670	99 %	50%
B-PReLU	98.13	21,843	99 %	99%
B-Dropout	96.86	21,840	99 %	49%
B-DP-Norm	97.97	21,962	99 %	51%
L(eNet)5	98.81	61,706	99 %	47%
L5-Dropout	98.72	61,706	99 %	45%
L5-D-Norm	99.05	62,598	98 %	49%

- Maximum RAD ≈ 98% in all models
- > 45% of params
 are vulnerable in all
 the MNIST models

RQ-1: How Vulnerable Are Larger Models?

- Metric
 - Relative Accuracy Drop [RAD] =

$$\frac{(acc_{clean} - acc_{corrupted})}{acc_{clean}}$$

- Methodology
 - Flip (0 \rightarrow 1 and 1 \rightarrow 0) each bit in all parameters of a model
 - Measure the RAD over the entire validation set, each time
 [e.g. VGG16-ImageNet: examine 138M parameters ≈ 942 days]

RQ-1: How Vulnerable Are Larger Models?

- Metric
 - Relative Accuracy Drop [RAD] =

$$\frac{(acc_{clean} - acc_{corrupted})}{acc_{clean}}$$

- Methodology
 - Flip (0 \rightarrow 1 and 1 \rightarrow 0) each bit in all parameters of a model
 - Measure the RAD over the entire validation set, each time
- Speed-up heuristics
 - Sampled validation set (SV): use 10% of the validation set
 - Inspect only specific bits (SB): the exponents or their MSBs
 - Sampled parameters (SP): uniformly sample 20k parameters

CYBERSECURITY CENTE

RQ-1: Vulnerability Analysis in Large Models

Dataset	Network	Acc.	# Params	SV	SB	SP	Max RAD	Ratio
	B(ase)	83.74	776K	\checkmark	\checkmark_{exp}	Х		
	B-Slim	82.19	197К	\checkmark	\checkmark_{exp}	Х		
R-10	B-Dropout	81.18	776K	\checkmark	\checkmark_{exp}	Х		
CIFA	B-D-Norm	80.17	778K	\checkmark	\checkmark_{exp}	Х		
	AlexNet	83.96	2.5M	\checkmark	\checkmark_{exp}	Х		
	VGG16	91.34	14.7M	\checkmark	\checkmark_{exp}	Х		
ageNet	AlexNet	79.07	61.1M	\checkmark	\checkmark_{31st}	√ (20K)		
	VGG16	90.38	138.4M	\checkmark	\checkmark_{31st}	√ (20K)		
	ResNet50	92.86	25.6M	\checkmark	\checkmark_{31st}	√ (20K)		
<u></u>	DenseNet161	93.56	28.9M	\checkmark	\checkmark_{31st}	√ (20K)		
	InceptionV3	88.65	27.2M	\checkmark	\checkmark_{31st}	√ (20K)		

Sanghyun Hong, http://hardwarefail.ml

MARYLAND CYBERSECURITY CENTER

RQ-1: Vulnerability Analysis in Large Models

Dataset	Network	Acc.	# Params	SV	SB	SP	Max RAD	Ratio
	B(ase)	83.74	776K	\checkmark	\checkmark_{exp}	Х	94 %	46.8%
	B-Slim	82.19	197K	\checkmark	\checkmark_{exp}	Х	93 %	46.7%
R-10	B-Dropout	81.18	776K	\checkmark	\checkmark_{exp}	Х	94 %	40.5%
CIFA	B-D-Norm	80.17	778K	\checkmark	\checkmark_{exp}	Х	97 %	45.9%
	AlexNet	83.96	2.5M	\checkmark	\checkmark_{exp}	Х	96 %	47.3%
	VGG16	91.34	14.7M	\checkmark	\checkmark_{exp}	Х	99 %	46.2%
ImageNet	AlexNet	79.07	61.1M	\checkmark	\checkmark_{31st}	√ (20K)	100 %	47.3%
	VGG16	90.38	138.4M	\checkmark	\checkmark_{31st}	√ (20K)	99 %	42.1%
	ResNet50	92.86	25.6M	\checkmark	\checkmark_{31st}	√ (20K)	100 %	47.8%
	DenseNet161	93.56	28.9M	\checkmark	\checkmark_{31st}	√ (20K)	100 %	49.0%
	InceptionV3	88.65	27.2M	\checkmark	$\sqrt{31st}$	√ (20К)	100 %	40.8%

Sanghyun Hong, http://hardwarefail.ml

MARYLAND CYBERSECURITY CENTER

Research Questions

- **RQ-1**: How vulnerable are DNNs to a single bit-flip?
- **RQ-2**: What properties influence this vulnerability?
- **RQ-3**: Can an attacker exploit this vulnerability?
- **RQ-4**: Can we utilize DNN-level mechanisms for mitigation?

RQ-2: Properties that Influence the Vulnerability

- (Network-level) DNN-properties
- (Parameter-level) Bitwise representation

RQ-2: Impact of the Common Techniques

- (Network-level) DNN-properties
 - The dropout and batch-norm do not affect the vulnerability

Dataset	Network	Base acc.	# Params	SV	SB	SP	Max RAD	Ratio
F	L(eNet)5	98.81	61,706	Х	Х	Х	99 %	47%
SINIK	L5-Dropout	98.72	61,706	Х	Х	Х	99 %	45%
2	L5-D-Norm	99.05	62,598	Х	Х	Х	98 %	49%
CIFAR-10	B(ase)	83.74	776 K	\checkmark	\checkmark	Х	94 %	47%
	B-Dropout	81.18	776 K	\checkmark	\checkmark	Х	94 %	41%
	B-D-Norm	80.17	778 K	\checkmark	\checkmark	Х	97 %	46%

RQ-2: Impact of the Other DNN Properties

- (Network-level) DNN-properties
 - The dropout and batch-norm cannot reduce the vulnerability
 - The vulnerability increases proportionally with the width
 - The activation with negative values doubles the vulnerability
 - The vulnerability is consistent across 19 DNNs' architectures
 - [8 MNIST, 5 CIFAR-10, and 5 ImageNet architectures]

RQ-2: Impact of the Parameter Sign

- (Parameter-level) Bitwise representation
 - Flip the MSB of the exponents mostly lead to [RAD > 10%]
 - The only (0→1) flip direction leads to [RAD > 10%]
 - The positive parameters are likely to be vulnerable to bit-flips than the negative parameters

Research Questions

- **RQ-1**: How vulnerable are DNNs to a single bit-flip?
- **RQ-2**: What properties influence this vulnerability?
- **RQ-3**: Can an attacker exploit this vulnerability?
- **RQ-4**: Can we utilize DNN-level mechanisms for mitigation?

RQ-3: Threat Model – Attacker's Capability

- Capability
 - Surgical: can cause a bit-flip at an intended location
 - Blind: cannot control the location of a bit-flip

RQ-3: Threat Model – Attacker's Knowledge

- Capability
 - Surgical: can cause a bit-flip at an intended location
 - Blind: cannot control the location of a bit-flip
- Knowledge:
 - White-box: knows the victim model internals
 - Black-box: has no knowledge of the victim model

RQ-3: Threat Model – Single Bit Adversary

RQ-3: Practical Weapon – Rowhammer

- Rowhammer attacks
 - Single-bit corruption primitives at DRAM-level
 - Software-induced hardware fault attacks

[The attacker only requires a user-level access to memory]

Double-sided Rowhammer attack

RQ-3: Practical Weapon – Rowhammer

- Rowhammer attacks
 - Single-bit corruption primitives at DRAM-level
 - Software-induced hardware fault attacks

[The attacker only requires a user-level access to memory]

Double-sided Rowhammer attack

RQ-3: Threat Model (Re-visited)

RQ-3: If Our Adversary Can Flip Multiple-Bits

RQ-3: The Weakest Attacker with Rowhammer

- Evaluation
 - MLaaS scenario: a VM runs under the Rowhammer pressure
 - A Python process that constantly queries the VGG16 ImageNet model
 - Make bit-flips to the process memory: both on the code and data [Consequences: RAD > 10%, process crash, or RAD <= 10%]
 - Method: Hammertime¹ DB
 - Explore Rowhammer effects systematically in 12 different DRAM chips
 [Vulnerability of DRAM: based on the number of bits subjected to flip]
 - Experiments
 - 25 experiments for each of 12 different DRAM chips
 - 300 cumulative bit-flip attempts for each experiment

LAND ¹Tatar et al., Defeating Software Mitigations against Rowhammer: a Surgical Precision Hammer, RAID'18

RQ-3: The Weakest Attacker with Rowhammer

- Blind attack results
 - The attacker can inflict the Terminal Brain Damage (RAD > 10%) to the victim model, effectively
 - On average, 62% (15.6/25) of the experiments were successful
 - With the most vulnerable DRAM chip, 96% (24/25) successes
 - With the least vulnerable DRAM chip, 4% (1/25) successes
 - It is Challenging to Detect the blind attacker
 - Only 6 crashes observed over the entire 7.5k bit-flip attempts

Blind Rowhammer attack is practical against DNN models

Research Questions

- **RQ-1**: How vulnerable are DNNs to single bit-flips?
- **RQ-2**: What properties influence this vulnerability?
- **RQ-3**: Can an attacker exploit this vulnerability?
- **RQ-4**: Can we utilize DNN-level mechanisms for mitigation?

RQ-4: Rowhammer Defenses

- Hardware-supported defenses to fault attack
 - ECC: Error correcting code in memory¹
 - Detection based on hardware performance counters²
- System-level defenses to fault attack
 - CATT: Memory isolation of the kernel and user space³
 - ZebRAM: Software-based isolation of every DRAM row⁴

They require infrastructure-wide changes, or they are not effective against other hardware faults

¹Kim et al., *Flipping Bits in Memory without Accessing Them: An Experimental Study of DRAM …,* ACM SIGARCH'14 ²Aweke et al., *Anvil: Software-based Protection against Next-generation Rowhammer attacks,* ACM SIGPLAN'16 ³Brasser et al., *Can't Touch This: Software-only Mitigation against Rowhammer Attacks …,* USENIX'17 ⁴Konoth et al., *Zebram: Comprehensive and Compatible Software Protection against Rowhammer Attacks,* OSDI'18

RQ-4: Can We Mitigate this Vulnerability?

- Investigate DNN-level defenses:
 - Restrict activation magnitudes: Tanh or ReLU6
 - Use low-precision numbers: quantization or binarization

RQ-4: Pros and Cons of Our Defenses

- Pros
 - Both the directions reduce the # of vulnerable parameters

- Cons
 - Require to re-train a whole model from scratch

RQ-4: Pros and Cons of Our Defenses

- Pros
 - Both directions reduce the # of vulnerable parameters
 - Substitute activation functions without re-training
- Cons
 - Require to re-train a whole model from scratch
 - Expect the accuracy drop of a model without re-training

Summary of Our Results

- RQ-1: How vulnerable are DNNs to single bit-flips? All DNNs have a bit whose flip causes RAD up to 100% 40-50% of all parameters in a model are vulnerable
- **RQ-2**: What properties influence this vulnerability? The vulnerability is consistent across multiple DNNs
- RQ-3: Can an attacker exploit this vulnerability?
 Blind Rowhammer attacker can exploit this practically
- RQ-4: Can we utilize DNN-level mechanisms for mitigation? We reduce the vulnerable parameters in a model; but ours degrade the performance or require the re-training

Conclusions and Implications

- DNNs are not resilient to worst-case parameter perturbations
 - Re-examine techniques relying on graceful degradations with security lens
- The vulnerability of DNNs to μ -arch. attacks is under-studied
 - Explore and evaluate new attacks, particularly thought hard
 - These attacks may be inflicted with weak attackers, e.g. blind Rowhammer
- For AI systems, system-level defenses are not sufficient
 - Consider additional model-level defenses that account for DNN properties

Thank you!

Sanghyun Hong

shhong@cs.umd.edu

http://hardwarefail.ml

