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1990: Optimal Brain Damage – Graceful Degradations
: we can remove 60% of model parameters, without the accuracy drop



DNN’s Resilience – False Sense of Security

• Techniques that rely on the graceful degradation
– Parameter pruning1: to reduce the inference cost
– Parameter quantization2: to compress the network size
– Blend noises to parameters3: to improve the robustness

• Prior work showed it is difficult to cause the accuracy drop
– Indiscriminate poisoning4: blend a lot of poisons ≈ 11% drop
– Storage media errors5: a lot of random bit errors ≈ 5% drop
– Hardware fault attacks6,7: a lot of random faults ≈ 7% drops
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They focus on the best-case or the average-case perturbations
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What is the WORST-CASE perturbation (a bit-flip) that 
inflicts a SIGNIFICANT accuracy drop exceeding 10%? 



Illustration: How DNN Computes
• Accuracy: 98.53%
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1 2 0

Conv [1, 10, 5x5] Conv [10, 20, 5x5] FC [320, 50] FC [50, 10]



Prior Work: Optimal Brain Damage

• Accuracy:
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1 2 0

Conv [1, 10, 5x5] Conv [10, 20, 5x5] FC [320, 50] FC [50, 10]

The unimportant parameters

98.53% (0% drop) 



Prior Work: Hardware Fault Attacks
• Accuracy: 98.53%
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Conv [1, 10, 5x5] Conv [10, 20, 5x5] FC [320, 50] FC [50, 10]

Memory (RAM)

weight + bias weight + bias weight + bias weight + bias

1 2 0



Prior Work: Hardware Fault Attacks

• Accuracy:
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Conv [1, 10, 5x5] Conv [10, 20, 5x5] FC [320, 50] FC [50, 10]

1 2 0

93.53% (5% drop) 

Memory (RAM)

weight + bias

0.3504: 1.401 x 2"# : 0 | 0111 1101 | 011 0011 0110 1111 1101 0001

Sign Exponent Mantissa

0.0219: 1.401 x 2"$ : 0 | 0011 1001 | 011 0011 0110 1111 1101 0001



Can We Find a Worst-case Bit-flip?

• Accuracy:
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1 2 0

Conv [1, 10, 5x5] Conv [10, 20, 5x5] FC [320, 50] FC [50, 10]

Memory (RAM)

weight + bias
1.2E+38: 1.401 x 2"#$: 0 | 1011 1101 | 011 0011 0110 1111 1101 0001

0 3 0

0.3504: 1.401 x 2%& : 0 | 0111 1101 | 011 0011 0110 1111 1101 0001

Sign Exponent Mantissa

57.52% (41.01% drop) 



Research Questions
• RQ-1: How vulnerable are DNNs to a single bit-flip?

• RQ-2: What properties influence this vulnerability?

• RQ-3: Can an attacker exploit this vulnerability?

• RQ-4: Can we utilize DNN-level mechanisms for mitigation?

Sanghyun Hong, http://hardwarefail.ml 16



Research Questions
• RQ-1: How vulnerable are DNNs to a single bit-flip?

• RQ-2: What properties influence this vulnerability?

• RQ-3: Can an attacker exploit this vulnerability?

• RQ-4: Can we utilize DNN-level mechanisms for mitigation?

Sanghyun Hong, http://hardwarefail.ml 17



RQ-1: How Vulnerable are DNNs to a Bit-flip?

• Metric

– Relative Accuracy Drop [RAD] = !""#$%&' ( !""#)**+,-%.
!""#$%&'

• Methodology
– Flip (0→1 and 1→0) each bit in all parameters of a model
– Measure the RAD over the entire validation set, each time
– Achilles bit: when the bit flips, the flip inflicts RAD > 10%

• Vulnerability
– Max RAD: the maximum RAD that an Achilles bit can inflict
– Ratio: the percentage of vulnerable parameters in a model
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Network Acc. # Params Max RAD Ratio

B(ase) 95.71 21,840 98 % 50%

B-Wide 98.46 85,670 99 % 50%

B-PReLU 98.13 21,843 99 % 99%

B-Dropout 96.86 21,840 99 % 49%

B-DP-Norm 97.97 21,962 99 % 51%

L(eNet)5 98.81 61,706 99 % 47%

L5-Dropout 98.72 61,706 99 % 45%

L5-D-Norm 99.05 62,598 98 % 49%

RQ-1: Vulnerability Analysis in MNIST
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• Maximum RAD ≈ 
98% in all models 

• > 45% of params
are vulnerable in all 
the MNIST models



RQ-1: How Vulnerable Are Larger Models?
• Metric

– Relative Accuracy Drop [RAD] = 
!""#$%&' ( !""#)**+,-%.

!""#$%&'

• Methodology

– Flip (0→1 and 1→0) each bit in all parameters of a model

– Measure the RAD over the entire validation set, each time

[e.g. VGG16-ImageNet: examine 138M parameters ≈ 942 days]
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RQ-1: How Vulnerable Are Larger Models?

• Metric

– Relative Accuracy Drop [RAD] = !""#$%&' ( !""#)**+,-%.
!""#$%&'

• Methodology
– Flip (0→1 and 1→0) each bit in all parameters of a model
– Measure the RAD over the entire validation set, each time

• Speed-up heuristics
– Sampled validation set (SV): use 10% of the validation set
– Inspect only specific bits (SB): the exponents or their MSBs

– Sampled parameters (SP): uniformly sample 20k parameters
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RQ-1: Vulnerability Analysis in Large Models
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Dataset Network Acc. # Params SV SB SP Max RAD Ratio

CI
FA

R
-1

0

B(ase) 83.74 776K ✓ ✓!"# ✗
B-Slim 82.19 197K ✓ ✓!"# ✗
B-Dropout 81.18 776K ✓ ✓!"# ✗
B-D-Norm 80.17 778K ✓ ✓!"# ✗
AlexNet 83.96 2.5M ✓ ✓!"# ✗
VGG16 91.34 14.7M ✓ ✓!"# ✗

Im
ag

eN
et

AlexNet 79.07 61.1M ✓ ✓$%&' ✓ (20K)

VGG16 90.38 138.4M ✓ ✓$%&' ✓ (20K)

ResNet50 92.86 25.6M ✓ ✓$%&' ✓ (20K)

DenseNet161 93.56 28.9M ✓ ✓$%&' ✓ (20K)

InceptionV3 88.65 27.2M ✓ ✓$%&' ✓ (20K)



RQ-1: Vulnerability Analysis in Large Models
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Dataset Network Acc. # Params SV SB SP Max RAD Ratio

CI
FA

R
-1

0

B(ase) 83.74 776K ✓ ✓!"# ✗ 94 % 46.8%

B-Slim 82.19 197K ✓ ✓!"# ✗ 93 % 46.7%

B-Dropout 81.18 776K ✓ ✓!"# ✗ 94 % 40.5%

B-D-Norm 80.17 778K ✓ ✓!"# ✗ 97 % 45.9%

AlexNet 83.96 2.5M ✓ ✓!"# ✗ 96 % 47.3%

VGG16 91.34 14.7M ✓ ✓!"# ✗ 99 % 46.2%

Im
ag

eN
et

AlexNet 79.07 61.1M ✓ ✓$%&' ✓ (20K) 100 % 47.3%

VGG16 90.38 138.4M ✓ ✓$%&' ✓ (20K) 99 % 42.1%

ResNet50 92.86 25.6M ✓ ✓$%&' ✓ (20K) 100 % 47.8%

DenseNet161 93.56 28.9M ✓ ✓$%&' ✓ (20K) 100 % 49.0%

InceptionV3 88.65 27.2M ✓ ✓$%&' ✓ (20K) 100 % 40.8%



Research Questions
• RQ-1: How vulnerable are DNNs to a single bit-flip?

• RQ-2: What properties influence this vulnerability?

• RQ-3: Can an attacker exploit this vulnerability?

• RQ-4: Can we utilize DNN-level mechanisms for mitigation?
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RQ-2: Properties that Influence the Vulnerability
• (Network-level) DNN-properties
• (Parameter-level) Bitwise representation
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RQ-2: Impact of the Common Techniques

• (Network-level) DNN-properties
– The dropout and batch-norm do not affect the vulnerability
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Dataset Network Base acc. # Params SV SB SP Max RAD Ratio

M
IN

IS
T

L(eNet)5 98.81 61,706 ✗ ✗ ✗ 99 % 47%

L5-Dropout 98.72 61,706 ✗ ✗ ✗ 99 % 45%

L5-D-Norm 99.05 62,598 ✗ ✗ ✗ 98 % 49%

CI
FA

R-
10

B(ase) 83.74 776 K ✓ ✓ ✗ 94 % 47%

B-Dropout 81.18 776 K ✓ ✓ ✗ 94 % 41%

B-D-Norm 80.17 778 K ✓ ✓ ✗ 97 % 46%



RQ-2: Impact of the Other DNN Properties
• (Network-level) DNN-properties
– The dropout and batch-norm cannot reduce the vulnerability 
– The vulnerability increases proportionally with the width
– The activation with negative values doubles the vulnerability 
– The vulnerability is consistent across 19 DNNs’ architectures

• [8 MNIST, 5 CIFAR-10, and 5 ImageNet architectures]
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RQ-2: Impact of the Parameter Sign

• (Parameter-level) Bitwise representation
– Flip the MSB of the exponents mostly lead to [RAD > 10%]
– The only (0→1) flip direction leads to [RAD > 10%] 
– The positive parameters are likely to be vulnerable 

to bit-flips than the negative parameters
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RQ-3: Threat Model – Attacker’s Capability

• Capability
– Surgical: can cause a bit-flip at an intended location
– Blind: cannot control the location of a bit-flip
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RQ-3: Threat Model – Attacker’s Knowledge

• Capability
– Surgical: can cause a bit-flip at an intended location
– Blind: cannot control the location of a bit-flip

• Knowledge:
– White-box: knows the victim model internals
– Black-box: has no knowledge of the victim model
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RQ-3: Threat Model – Single Bit Adversary
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White-boxBlack-box

Strongest attacker
!(#$% &' ()#$**+, -$%) ≈ 100%

Weakest attacker
! #$% &' ()#$**+, -$% ≈ /
[VGG16: 42.1% / 32-bits ≈ 1.32%]

Blind

Surgical



RQ-3: Practical Weapon – Rowhammer
• Rowhammer attacks
– Single-bit corruption primitives at DRAM-level
– Software-induced hardware fault attacks

[The attacker only requires a user-level access to memory]
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Row Buffer

Double-sided Rowhammer attack

0      0     1      0      1



RQ-3: Practical Weapon – Rowhammer
• Rowhammer attacks
– Single-bit corruption primitives at DRAM-level
– Software-induced hardware fault attacks

[The attacker only requires a user-level access to memory]
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Double-sided Rowhammer attack

Row Buffer

0      1 1      0      1



RQ-3: Threat Model (Re-visited)
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White-boxBlack-box

Blind
Surgical

Strongest attacker

Weakest attacker
! "#$ %& '("#))*+ ,#$ ≈ -
[VGG16: 42.1% / 32-bits ≈ 1.32%]

!("#$ %& '("#))*+ ,#$) ≈ 100%



RQ-3: If Our Adversary Can Flip Multiple-Bits
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White-boxBlack-box

Blind
Surgical

Strongest attacker

(Weakest) Stronger attacker
∑" #$% &' ()#$**+, -$% ≫ 1.3%

"(#$% &' ()#$**+, -$%) ≈ 100%



• Evaluation
– MLaaS scenario: a VM runs under the Rowhammer pressure

• A Python process that constantly queries the VGG16 ImageNet model
• Make bit-flips to the process memory: both on the code and data

[Consequences: RAD > 10%, process crash, or RAD <= 10%]

– Method: Hammertime1 DB
• Explore Rowhammer effects systematically in 12 different DRAM chips

[Vulnerability of DRAM: based on the number of bits subjected to flip]

– Experiments
• 25 experiments for each of 12 different DRAM chips
• 300 cumulative bit-flip attempts for each experiment

RQ-3: The Weakest Attacker with Rowhammer
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1Tatar et al., Defeating Software Mitigations against Rowhammer: a Surgical Precision Hammer, RAID’18



• Blind attack results
– The attacker can inflict the Terminal Brain Damage (RAD > 

10%) to the victim model, effectively
• On average, 62% (15.6/25) of the experiments were successful
• With the most vulnerable DRAM chip, 96% (24/25) successes 
• With the least vulnerable DRAM chip, 4% (1/25) successes

– It is Challenging to Detect the blind attacker
• Only 6 crashes observed over the entire 7.5k bit-flip attempts

RQ-3: The Weakest Attacker with Rowhammer
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Blind Rowhammer attack is practical against DNN models 



Research Questions
• RQ-1: How vulnerable are DNNs to single bit-flips?

• RQ-2: What properties influence this vulnerability?

• RQ-3: Can an attacker exploit this vulnerability?

• RQ-4: Can we utilize DNN-level mechanisms for mitigation?
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RQ-4: Rowhammer Defenses
• Hardware-supported defenses to fault attack
– ECC: Error correcting code in memory1

– Detection based on hardware performance counters2

• System-level defenses to fault attack
– CATT: Memory isolation of the kernel and user space3

– ZebRAM: Software-based isolation of every DRAM row4
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1Kim et al., Flipping Bits in Memory without Accessing Them: An Experimental Study of DRAM …, ACM SIGARCH’14
2Aweke et al., Anvil: Software-based Protection against Next-generation Rowhammer attacks, ACM SIGPLAN’16
3Brasser et al., Can’t Touch This: Software-only Mitigation against Rowhammer Attacks …, USENIX’17
4Konoth et al., Zebram: Comprehensive and Compatible Software Protection against Rowhammer Attacks, OSDI’18

They require infrastructure-wide changes, or 
they are not effective against other hardware faults



RQ-4: Can We Mitigate this Vulnerability?

• Investigate DNN-level defenses:
– Restrict activation magnitudes: Tanh or ReLU6
– Use low-precision numbers: quantization or binarization
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RQ-4: Pros and Cons of Our Defenses
• Pros
– Both the directions reduce the # of vulnerable parameters

• Cons
– Require to re-train a whole model from scratch
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RQ-4: Pros and Cons of Our Defenses

• Pros
– Both directions reduce the # of vulnerable parameters
– Substitute activation functions without re-training

• Cons
– Require to re-train a whole model from scratch
– Expect the accuracy drop of a model without re-training
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Summary of Our Results
• RQ-1: How vulnerable are DNNs to single bit-flips?

All DNNs have a bit whose flip causes RAD up to 100%
40-50% of all parameters in a model are vulnerable

• RQ-2: What properties influence this vulnerability?
The vulnerability is consistent across multiple DNNs

• RQ-3: Can an attacker exploit this vulnerability?
Blind Rowhammer attacker can exploit this practically

• RQ-4: Can we utilize DNN-level mechanisms for mitigation?
We reduce the vulnerable parameters in a model; but
ours degrade the performance or require the re-training
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Conclusions and Implications
• DNNs are not resilient to worst-case parameter perturbations
– Re-examine techniques relying on graceful degradations with security lens

• The vulnerability of DNNs to !-arch. attacks is under-studied
– Explore and evaluate new attacks, particularly thought hard
– These attacks may be inflicted with weak attackers, e.g. blind Rowhammer

• For AI systems, system-level defenses are not sufficient
– Consider additional model-level defenses that account for DNN properties
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Sanghyun Hong
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