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1990: Optimal Brain Damage — Graceful Degradations
: we can remove 60% of model parameters, without the accuracy drop
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DNN’s Resilience — False Sense of Security

that rely on the graceful degradation

— Parameter pruning!: to reduce the inference cost
— Parameter quantization?: to compress the network size
— Blend noises to parameters3: to improve the robustness

showed it is difficult to cause the accuracy drop

— Indiscriminate poisoning*: blend a lot of poisons = 11% drop
— Storage media errors-: a lot of random bit errors = 5% drop
— Hardware fault attacks®’: a lot of random faults = 7% drops

They focus on the best-case or the average-case perturbations
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What is the WORST-CASE perturbation (a bit-flip) that
inflicts a SIGNIFICANT accuracy drop exceeding 10%?
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lllustration: How DNN Computes

* Accuracy: 98.53%

Conv [1, 10, 5x5] Conv [10, 20, 5x5] FC [320, 50] FC [50, 10]
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Prior Work: Optimal Brain Damage

e Accuracy: 98.53% (0% drop)

Conv [1, 10, 5x5] Conv [10 20, 5x5] FC [320 50] FC [50 10]

--------------------------------------------------------------------------

The unimportant parameters
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Prior Work: Hardware Fault Attacks

* Accuracy: 98.53%

I \ ]
', \\\ 1' \‘ |' \‘
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1

Conv [4, 10, 5x5]  Conv [10, 20, 5x5] ' FC 50, 10]
Memory (RAM)
weight + bias weight + bias weight + bias weight + bias
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Prior Work: Hardware Fault Attacks

e Accuracy: 93.53% (5% drop)

frmmdooomeees

Conv [1, 10, 5x5]  Conv [10, 20, 5x5] FC [320, 50] | FC 50, 10]
Sign  Exponent Mantissa
................................................................................................................ S|
. -2 .
0.3504:1.401x27~:0| 01111101 | 011001101101111 1101 0001 - Memory (RAM)
0.0219:1.401x27%:0 | 00111001 | 011 0011 011011111101 0001

weight + bias
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Can We Find a Worst-case Bit-flip?

e Accuracy: 57.52% (41.01% drop)

frmmdooomeees

Conv [1, 10,5x5] Conv [10, 20, 5x5] FC [320, 50] ' FC[50, 10]
Sign  Exponent Mantissa
............................................................................................................... >l
0.3504:1.401 x 272 : 0| 0111 1101 | 011 0011 0110 1111 1101 0001 Memory (RAM)
1.2E+38: 1.401 x 21%6: 0 | 1011 1101 | 011 0011 0110 1111 1101 0001 |
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Research Questions

RQ-1: How vulnerable are DNNs to a single bit-flip?

RQ-2: What properties influence this vulnerability?

RQ-3: Can an attacker exploit this vulnerability?

RQ-4: Can we utilize DNN-level mechanisms for mitigation?

<2 CYBERSECURITY CENTER

Sanghyun Hong, http://hardwarefail.ml

16



Research Questions

1

RQ-1: How vulnerable are DNNs to a single bit-flip?
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RQ-1: How Vulnerable are DNNs to a Bit-flip?

e Metric

] — (aCCclean - aCCcorrupted)

— Relative Accuracy Drop | P
 Methodology

— Flip (0>1 and 1->0) each bit in all parameters of a model

— Measure the RAD over the entire validation set, each time

— Achilles bit: when the bit flips, the flip inflicts RAD > 10%

* Vulnerability
— Max RAD: the maximum RAD that an Achilles bit can inflict

— Ratio: the percentage of vulnerable parameters in a model
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RQ-1: Vulnerability Analysis in MNIST

R o o

B(ase) 95.71
B-Wide 98.46
B-PRelLU 98.13
B-Dropout  96.86
B-DP-Norm  97.97
L(eNet)5 98.81
L5-Dropout 98.72

L5-D-Norm  99.05

Sanghyun Hong, http://hardwarefail.ml

21,840

85,670

21,843

21,840

21,962

61,706

61,706

62,598

98 %

99 %

99 %

99 %

99 %

99 %

99 %

98 %

50%

50%

99%

49%

51%

47%

45%

49%

98% in all models

e >45% of params

are vulnerable in all
the MINIST models
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RQ-1: How Vulnerable Are Larger Models?

e Metric

(aCCclean - aCCcorrupted)

— Relative Accuracy Drop [RAD] = —
clean
 Methodology
— Flip (0>1 and 1->0) each bit in all parameters of a model

— Measure the RAD over the entire validation set, each time
[e.g. VGG16-ImageNet: examine 138M parameters = 942 days]
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RQ-1: How Vulnerable Are Larger Models?

e Metric

] — (aCCclean - aCCcorrupted)

— Relative Accuracy Drop | P
 Methodology

— Flip (0>1 and 1->0) each bit in all parameters of a model

— Measure the RAD over the entire validation set, each time

* Speed-up heuristics
— Sampled validation set (SV): use validation set
— Inspect only specific bits (SB): or

— Sampled parameters (SP): uniformly
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RQ-1: Vulnerability Analysis in Large Models

B(ase) 83.74 776K vV exp X
B-Slim 8219 197K | Vv Vexp X

E B-Dropout 8118 776K @ v ew X

% B-D-Norm 80.17 778K v Yexp X
AlexNet 83.96 2.5M v \/exp X
VGG16 9134 147M | Vv Vexp X
AlexNet 79.07 611M vV V31 v (20K)

s VGGI6 90.38 1384M | v V31 v (20K)

?;o ResNet50 92.86 256M @ v V31 v (20K)

E DenseNetl61 93.56 289M | VvV V314 V (20K)
InceptionV3 88.65 27.2M @V V31 YV (20K)
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RQ-1: Vulnerability Analysis in Large Models

N T N T

B(ase) 83.74 776K v exp X 94 % 46.8%
B-Slim 82.19 197K V' | Ve X 93 % 46.7%
S B-Dropout 8118 776K v Vem X 94 % 40.5%
% B-D-Norm 80.17 778K V' Yexp X 97 % 45.9%
AlexNet 83.96 25M V' Ve X 96 % 47.3%
VGG16 9134 147M V Yexp X 99 % 46.2%
AlexNet 79.07 61IM VvV V31 Y (20K)  100% 47.3%
o  VGG16 90.38 1384M VvV V31 Y (20K) 99 % 42.1%
E” ResNet50 92.86 25.6M VvV V31 VYV (20K) 100 % 47.8%
E DenseNetisl 9356 289M Y V3ise Y (20K)| 100 % 49.0%
InceptionvV3  88.65 27.2M VvV V315 Vv (20K) 100 % 40.8%
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Research Questions

1

RQ-2: What properties influence this vulnerability?
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RQ-2: Properties that Influence the Vulnerability

e (Network-level) DNN-properties

* (Parameter-level) Bitwise representation
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RQ-2: Impact of the Common Techniques

(Network-level) DNN-properties
— The dropout and batch-norm do not affect the vulnerability

L(eNet)5 98.81 61,706 X 99 % 47%
-
(7]
Z L5-Dropout 98.72 61,706 X X X 99 % 45%
=
L5-D-Norm 99.05 62,598 X X X 98 % 49%
° B(ase) 83.74 776 K v v X 94 % 47%
[}
£  B-Dropout 81.18 776 K v v X 94 % 41%
L
©  B-D-Norm 80.17 778K v v X | 97% 46%
mMAnYLAND
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RQ-2: Impact of the Other DNN Properties

e (Network-level) DNN-properties
— The dropout and batch-norm cannot reduce the vulnerability
— The vulnerability increases proportionally with the width
— The activation with negative values doubles the vulnerability

— The vulnerability is consistent across 19 DNNs’ architectures
e [8 MINIST, 5 CIFAR-10, and 5 ImageNet architectures]
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RQ-2: Impact of the Parameter Sign

e (Parameter-level) Bitwise representation
— Flip the MSBE of the exponents mostly lead to [RAD > 10%]
— The only (0->1) flip direction leads to [RAD > 10%]

— The positive parameters are likely to be vulnerable
to bit-flips than the negative parameters
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Research Questions

* RQ-3: Can an attacker exploit this vulnerability?
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RQ-3: Threat Model — Attacker’s Capability

e Capability
— Surgical: can cause a bit-flip at an intended location
— Blind: cannot control the location of a bit-flip
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RQ-3: Threat Model — Attacker’s Knowledge

e Capability
— Surgical: can cause a bit-flip at an intended location
— Blind: cannot control the location of a bit-flip

 Knowledge:
— White-box: knows the victim model internals
— Black-box: has no knowledge of the victim model
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RQ-3: Threat Model - Single Bit Adversary

Surgical|

Black-box

\

Strongest attacker
P(hit an Achilles bit) = 100%

White-box

Weakest attacker
P(hit an Achilles bit) = €

[VGG16: 42.1% / 32-bits = 1.32%]
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RQ-3: Practical Weapon — Rowhammer

e Rowhammer attacks

— Single-bit corruption primitives at DRAM-|level

— Software-induced hardware fault attacks
[The attacker only requires a user-level access to memory]

( Row Buffer )

Double-sided Rowhammer attack
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RQ-3: Practical Weapon — Rowhammer

e Rowhammer attacks

— Single-bit corruption primitives at DRAM-|level

— Software-induced hardware fault attacks
[The attacker only requires a user-level access to memory]

Double-sided Rowhammer attack
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RQ-3: Threat Model (Re-visited)

a

4 N
C
om,
&
Strongest attacker
P(hit an Achilles bit) = 100%
Black-box White-box
Weakest attacker
P(hit an Achilles bit) = €
[VGG16: 42.1% / 32-bits = 1.32%] ==
-}
o

MARYLAND

EEEEEEEEEEEEEEEEEEE

Sanghyun Hong, http://hardwarefail.ml

51



RQ-3: If Our Adversary Can Flip Multiple-Bits

1

4N
C
om,
&
Strongest attacker
P(hit an Achilles bit) = 100%
Black-box White-box
Stronger attacker
Y. P(hit an Achilles bit) > 1.3%
o)
=
o
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RQ-3: The Weakest Attacker with Rowhammer

 Evaluation

: @ VM runs under the Rowhammer pressure

* A Python process that constantly queries the model

* Make bit-flips to the process memory: both on the and
[Consequences: RAD > 10%, process crash, or RAD <= 10%]

— Method: 1DB

* Explore Rowhammer effects systematically in
[Vulnerability of DRAM: based on the number of bits subjected to flip]

— Experiments
e 25 experiments for each of 12 different DRAM chips
e 300 cumulative bit-flip attempts for each experiment

m MARYLAND  ‘Tatar et al., Defeating Software Mitigations against Rowhammer: a Surgical Precision Hammer, RAID’18
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RQ-3: The Weakest Attacker with Rowhammer

 Blind attack results

— The attacker can inflict the Terminal Brain Damage (RAD >
10%) to the victim model, effectively

* On average, of the experiments were successful
e With the vulnerable DRAM chip, successes
* With the vulnerable DRAM chip, successes

— |t is Challenging to Detect the blind attacker
observed over the entire 7.5k bit-flip attempts

Blind Rowhammer attack is practical against DNN models
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Research Questions

1

RQ-4: Can we utilize DNN-level mechanisms for mitigation?
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RQ-4: Rowhammer Defenses

 Hardware-supported defenses to fault attack

— ECC: Error correcting code in memory!
— Detection based on hardware performance counters?

* System-level defenses to fault attack

— CATT: Memory isolation of the kernel and user space?
— ZebRAM: Software-based isolation of every DRAM row*

They require infrastructure-wide changes, or
they are not effective against other hardware faults

IKim et al., Flipping Bits in Memory without Accessing Them: An Experimental Study of DRAM ..., ACM SIGARCH’14
2Aweke et al., Anvil: Software-based Protection against Next-generation Rowhammer attacks, ACM SIGPLAN’16
3Brasser et al., Can’t Touch This: Software-only Mitigation against Rowhammer Attacks ..., USENIX'17

m MARYLAND 4onoth et al., Zebram: Comprehensive and Compatible Software Protection against Rowhammer Attacks, OSDI’18
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RQ-4: Can We Mitigate this Vulnerability?

* Investigate DNN-level defenses:

— Restrict activation magnitudes: Tanh or ReLU6
— Use low-precision numbers: quantization or binarization
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RQ-4: Pros and Cons of Our Defenses

* Pros

— Both the directions reduce the # of vulnerable parameters

e Cons

— Require to re-train a whole model from scratch
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RQ-4: Pros and Cons of Our Defenses

* Pros

— Substitute activation functions without re-training

e Cons

— Expect the accuracy drop of a model without re-training
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Summary of Our Results

RQ-1: How vulnerable are DNNs to single bit-flips?
All DNNs have a bit whose flip causes RAD up to 100%
40-50% of all parameters in a model are vulnerable

RQ-2: What properties influence this vulnerability?
The vulnerability is consistent across multiple DNNs

RQ-3: Can an attacker exploit this vulnerability?
Blind Rowhammer attacker can exploit this practically

RQ-4: Can we utilize DNN-level mechanisms for mitigation?
We reduce the vulnerable parameters in a model; but

ours degrade the performance or require the re-training
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Conclusions and Implications

* DNNs are not resilient to worst-case parameter perturbations

— Re-examine techniques relying on graceful degradations with security lens

* The vulnerability of DNNs to u-arch. attacks is under-studied

— Explore and evaluate new attacks, particularly thought hard
— These attacks may be inflicted with weak attackers, e.g. blind Rowhammer

* For Al systems, system-level defenses are not sufficient
— Consider additional that account for DNN properties
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Thank youl!

Sanghyun Hong
shhong@cs.umd.edu
http://hardwarefail.ml
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