

Point Break: A Study of Bandwidth Denial-of-Service Attacks against Tor

Rob Jansen, U.S. Naval Research Laboratory Tavish Vaidya, Georgetown University Micah Sherr, Georgetown University

Rob Jansen Center for High Assurance Computer Systems U.S. Naval Research Laboratory 28th USENIX Security Symposium Hyatt Regency, Santa Clara, CA, USA August 16th, 2019

Most Exciting Contribution

Explore the costs and effects of bandwidth denial-of-service attacks on Tor

Tor Protects Users

Anonymous Communication

- Separates identification from routing
- Provides unlinkable communication
- Protects user privacy and safety online

Tor Browse Privately. Explore Freely.

Defend yourself against tracking and surveillance. Circumvent censorship.

Tor is Popular

- ~2-8 million daily active users
- ~6,500 volunteer relays
- Transferring ~200 Gbit/s

U.S. NAVAL RESEARCH LABORATORY

Anonymity Attacks against Tor

Website fingerprinting attacks

 CCSW'09, WPES'11, CCS'12, WPES'13, Sec'14, NDSS'16, Sec'16, NDSS'18, CCS'18

Traffic correlation attacks

 S&P'05, PET'07, Sec'09, CCS'09, TISSEC'10, CCS'11, PETS'13, CCS'13, CN'13, NDSS'14, CCS'18,

Routing attacks

 WPES'07, CCS'07, Sec'15, PETS'16, S&P'17, PETS'18

Anonymity Attacks against Tor

WPES'07, CCS'07, Sec'15, PETS'16, S&P'17, PETS'18

U.S. Naval Research Laboratory

[tor-project] Ongoing DDoS on the Network - Status

David Goulet dgoulet at torproject.org Wed Dec 20 16:15:39 UTC 2017

[tor-relays] could Tor devs provide an update on DOS attacks?

Roger Dingledine arma at mit.edu Tue Jan 16 08:27:21 UTC 2018

#24902 closed enhancement (fixed)

Opened 19 months ago Closed 17 months ago Last modified 4 months ago

Denial of Service mitigation subsystem

https://trac.torproject.org/projects/tor/ticket/24902

1

Research Questions and Summary of Results

Component	Cost	Effect	
Bridges	\$17,000 / mo.	44% slower	
TorFlow BW Scanners	\$2,800 / mo.	80% slower	
Relays	\$140 - \$1,600 / mo. or \$6,300 / mo.	47% slower or 120% slower	

Research Questions and Summary of Results

Research Questions and Summary of Results

	Component		Cost	Effect	
	Bridge	S	\$17,000 / mo.	44% slower	
	TorFlow Scanne	BW ers	\$2,800 / mo.	80% slower	
VV	Relay	S	\$140 - \$1,600 / mo. or \$6,300 / mo.	47% slower or 120% slower	

Attack

Step 1: Build 8-hop circuit

Step 1:Step 2:Build 8-hop circuitGET large files

Step 1:Step 2:Step 3:Build 8-hop circuitGET large filesStop reading

Evaluation

Evaluation Setup

Use Shadow for evaluation

- Private Tor network for safety
- 634 relays (10% size, capacity of Tor)
- 15,000 clients and 2,000 servers generating traffic through Tor

Explore network effects

- Attack strength (num. attack circuits)
- Network load, attacker resource usage, client performance

https://github.com/shadow/shadow

Bandwidth Used by Attacker and Tor Network

Bandwidth Used by Attacker and Tor Network

U.S. NAVAL RESEARCH LABORATORY Bandwidth Used by Attacker and Tor Network

Effect on Client Performance

Effect on Client Performance

20k Circuits TTFB: +138%

U.S. Naval Research Laboratory

Effect on Client Performance

20k Circuits +138%

Stop Reading TFB: +48%

Point Break: A Study of Bandwidth Denial-of-Service Attacks against Tor | 33

LB:

Requirements for "stop reading" attack

- 200,000 circuits
- 3 Gbit/s, 20 IP addresses

Cost of Bandwidth and IP addresses

- 3 dedicated servers at 1 Gbit/s each, amortized cost of 0.70 \$/hour/Gbit/s
- 17 additional IPs at \$5 each, \$85 total

Total Cost Estimates

- Conservative: \$1,647 per month
- Optimistic: \$140 per month (\$7 * 20 VPSes)

Table 2: The estimated mean hourly cost to flood a single target with 1 Gbit/s using various dedicated server providers. The amortized cost is the hourly price per Gbit/s of traffic. Prices include 4 CPU cores with minimum 16 GB RAM and 500 GB storage.

Service	Speed (Gbit/s)	Quota (TB)	\$/mo. (USD)	Amort. (USD)
Liquid Web	1.00	5	\$ 249.00	\$ 0.35
InMotion	1.00	10	\$ 166.59	\$ 0.23
DreamHost	Unkn.	Unmet.	\$ 249.00	_
GoDaddy	1.00	Unmet.	\$ 239.99	\$ 0.33
BlueHost	0.10	15	\$ 249.99	\$ 3.47
1&1	1.00	Unmet.	\$ 130.00	\$ 0.18
FatCow	Unkn.	15	\$ 239.99	_
OVH	0.50	Unmet.	\$ 119.99	\$ 0.33
SiteGround	1.00	10	\$ 269.00	\$ 0.37
YesUpHost	1.00	100	\$ 249.00	\$ 0.35

Mean amortized cost (\$/hour/Gbit/s): \$0.70

Comparison to relay Sybil attacks with the same bandwidth budget (3 Gbit/s)

Sybil DoS Attack

Sybil Deanonymization Attack

Comparison to relay Sybil attacks with the same bandwidth budget (3 Gbit/s)

Sybil DoS Attack

- Goal: drop all circuits containing Sybil relays
- Exit BW is scarcest and gives highest probability of selection
- 3 Gbit/s = 4.5% dropped circuits

Sybil Deanonymization Attack

Comparison to relay Sybil attacks with the same bandwidth budget (3 Gbit/s)

Sybil DoS Attack

- Goal: drop all circuits containing Sybil relays
- Exit BW is scarcest and gives highest probability of selection
- 3 Gbit/s = 4.5% dropped circuits

Sybil Deanonymization Attack

- Goal: appear on both ends of circuits to compromise anonymity
- 5:1 guard-to-exit BW allocation
- 2.8% guard * 0.8% exit = 0.02% total circuits compromised

Mitigation

Mitigations to Relay Congestion Attack

Ability to stop reading from circuits

• Authenticated SENDMEs, Tor Proposal 289, implemented in 0.4.1.1-alpha

Mitigations to Relay Congestion Attack

Ability to stop reading from circuits

• Authenticated SENDMEs, Tor Proposal 289, implemented in 0.4.1.1-alpha

Ability to build 8 hop circuits

• Reduce to 4 hops to reduce BW amplification factor

Mitigations to Relay Congestion Attack

Ability to stop reading from circuits

• Authenticated SENDMEs, Tor Proposal 289, implemented in 0.4.1.1-alpha

Ability to build 8 hop circuits

• Reduce to 4 hops to reduce BW amplification factor

Ability to use any relay as entry

- Privacy-preserving defense against Sybil attacks
- Detect, measure, and prevent such attacks

Contributions

- Bridge congestion attack: \$17K/mo., 44% slower
- Bandwidth authority attack: \$2.6K/mo., 80% slower
- Relay congestion attack: \$140-\$1.6K/mo., 47% slower (or \$6.3K/mo., 120% slower)

Future Work

- Deploy simple mitigation techniques in short term
- Need research in Sybil attack detection, measurement, and prevention

Contact

• <rob.g.jansen@nrl.navy.mil>, robgjansen.com, @robgjansen