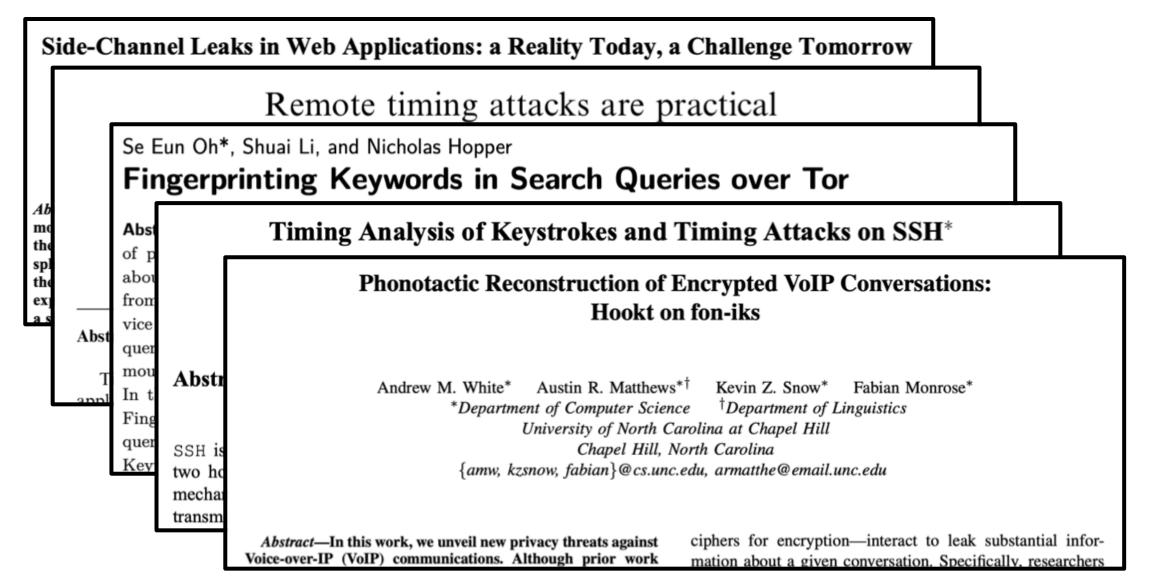


What Are You Searching For? A Remote Keylogging Attack on Search Engine Autocomplete

Vinnie Monaco Naval Postgraduate School

Search engine autocomplete


Search query

Packet capture

the lazy dog
the lazy dog jumped
the lazy dog cookie co
the lazy dog menu
the lazy dog colorado
the lazy dog sentence
the lazy dog cafe
the lazy dog restaurant
the lazy dog locations
the lazy dog happy hour

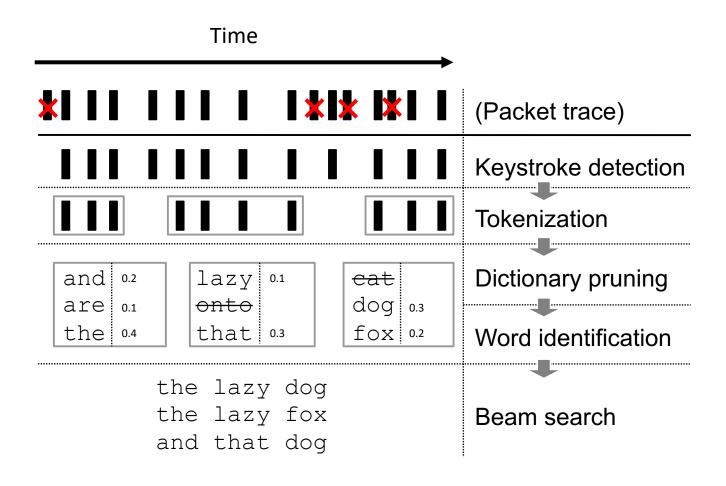
No.		Time	Protocol	TCP len	Info	
г	8	8.865747280	TLSv1.2	151	Application	Data
	21	13.780190622	TLSv1.2	157	Application	Data
	22	13.782895588	TLSv1.2	182	Application	Data,
	39	14.680043369	TLSv1.2	157	Application	Data
	48	15.227565960	TLSv1.2	158	Application	Data
	58	15.873758188	TLSv1.2	160	Application	Data
	71	16.687042194	TLSv1.2	161	Application	Data
	82	17.746582385	TLSv1.2	162	Application	Data
	92	18.334356331	TLSv1.2	162	Application	Data
1	01	18.910558934	TLSv1.2	163	Application	Data
1	15	19.571843835	TLSv1.2	165	Application	Data
1	25	20.564457628	TLSv1.2	167	Application	Data
1	37	21.071393294	TLSv1.2	167	Application	Data
1	47	21.627694121	TLSv1.2	168	Application	Data
_						

20 years of network side channels

Attack overview

• Predict search queries using only client traffic

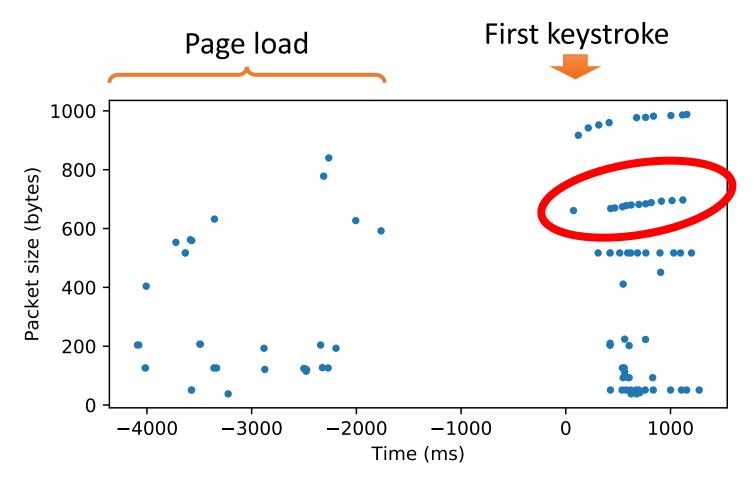
- Combine multiple independent weak predictors
 - Escaped URL characters
 - HTTP2 header compression
 - Key-press time intervals
 - Natural language


Threat model

Capture encrypted traffic at the NIC

- Victim types lowercase English letters + Space
 - No typos/backspace

Autocomplete requests triggered by keydown events


Attack workflow

Autocomplete GET requests

```
GET /complete/search?q=t&cp=1
GET /complete/search?q=th&cp=2
GET /complete/search?q=the&cp=3
GET /complete/search?q=the%20&cp=4
GET /complete/search?q=the%201&cp=5
GET /complete/search?q=the%201a&cp=6
GET /complete/search?q=the%20laz&cp=7
GET /complete/search?q=the%20lazy&cp=8
```

Keystroke detection

Baidu example: searching for "the lazy dog"

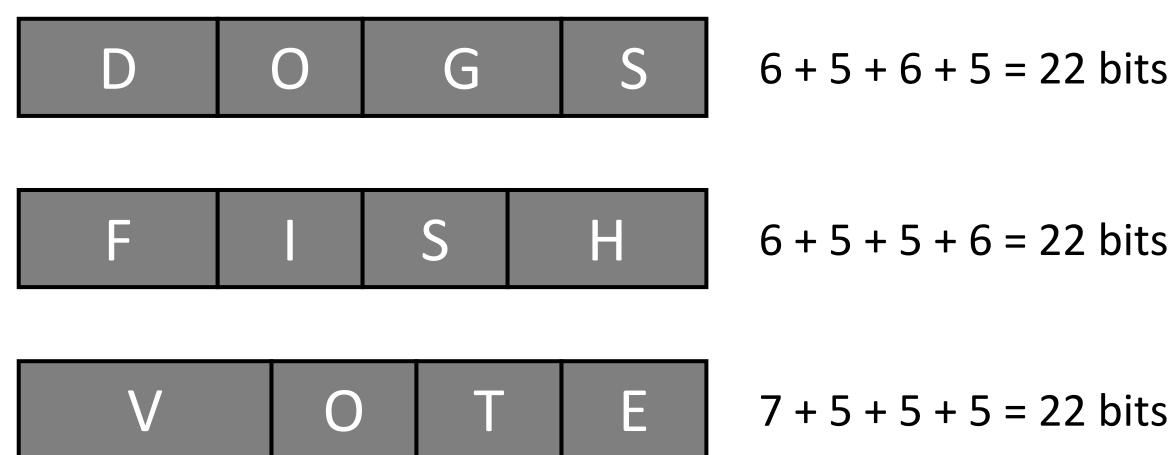
• Find the longest increasing subsequence (LIS) of packet sizes

Tokenization

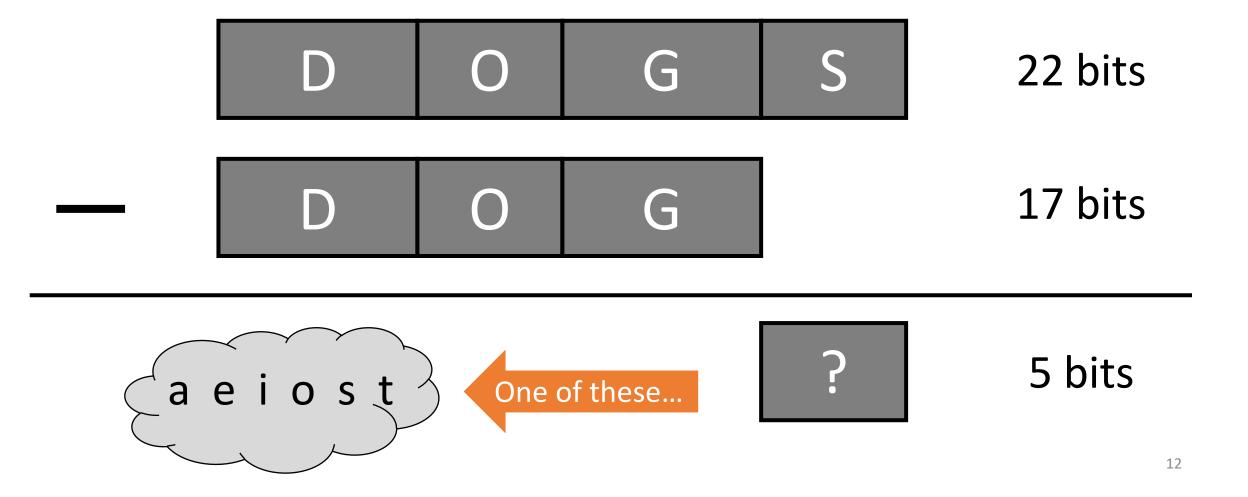
Packet size difference

```
GET /complete/search?q=t&cp=1
GET /complete/search?q=th&cp=2
                                                  +1
GET /complete/search?q=the&cp=3
                                                  +1
GET /complete/search?q=the%20&cp=4
                                                  +3
GET /complete/search?q=the%201&cp=5
                                                  +1
GET /complete/search?q=the%20la&cp=6
                                                  +1
GET /complete/search?q=the%20laz&cp=7
                                                  +1
GET /complete/search?q=the%20lazy&cp=8
                                                  +1
```

HPACK (HTTP2 header compression)

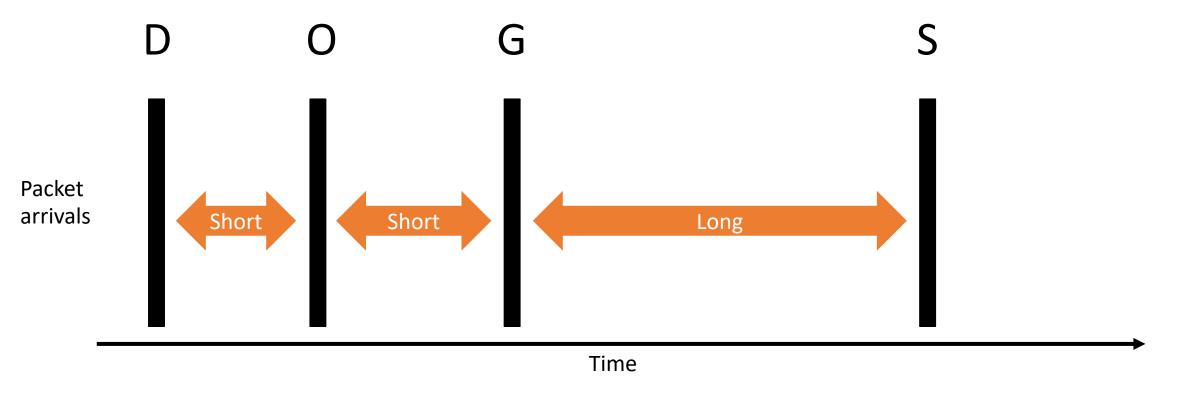

Static Huffman Encoding

```
0 1 2 3 4 5 6 7
+---+---+---+---+
| H | String Length (7+) |
+---+
| String Data (Length octets) |
+----+
```


```
97)
        00011
         100011
         00100
(100)
        100100
(101)
        00101
(102)
         100101
(103)
         100110
         100111
(104)
(105)
         00110
         1110100
(106)
(107)
         1110101
(108)
         101000
(109)
        101001
(110)
         101010
(111)
         00111
(112)
         101011
        1110110
(113)
(114)
        101100
(115)
         01000
(116)
         01001
(117)
        101101
(118)
        1110111
(119)
         1111000
(120)
         1111001
         1111010
        1111011
```

PETAL

(Preset Encoding Table Information Leakage)


Incremental compression

Dictionary pruning

Word identification

• Use a BiRNN to predict keys

Language model and beam search

Which word comes next?

> the lazy ____

- 1) dog
- 2) car
- 3) hat
- 4) big

```
Top 50 the lazy dog the blue car and some fox hypotheses how they run
```

Data collection and results

- Data collect
 - Browser automation with Selenium
 - Replay keystrokes with uinput
 - 4k unique queries
 - 2 search engines (Google, Baidu)
 - 2 browsers (Chrome, Firefox)
 - 16k total queries recorded
- Keystroke detection and tokenization accuracy
 - > 99% (Google and Baidu)
- Top-50 classification accuracy (entire query is correct)
 - 15% (Google)
 - 13% (Baidu)

Example

Truth

he is recovering from a sprained

Good hypotheses

he is recovering from a sprained he is recovering from a strained

Bad hypotheses

to be president from a position is to learn from such a position

Conclusions

- This attack has many of moving parts...
 - Several independent weak side channels combine to create a strong one
- Language modeling is key
 - The predictability of human behavior is difficult to mask
- Where else does incremental compression occur?
 - Thin clients/websites with autosave feature?
 - Mapping services (latitude/longitude changes incrementally)?

Thank you

• Source code

kreep (keystroke recognition and entropy elimination program) https://github.com/vmonaco/kreep

Contact me

https://vmonaco.com

Questions?