# Secure Multi-User Content Sharing for Augmented Reality Applications

Kimberly Ruth, Tadayoshi Kohno, Franziska Roesner

University of Washington

#### Emerging AR/MR Technologies



¢



ARCore













#### **Emerging AR/MR Technologies**

ARCore



Technologies that *continuously process sensory input* from the user's surroundings and *overlay digital content* on top of the user's perception of the world.



#### **AR Security Research Context**



#### **AR Security Research Context**



[Jana, Molnar, Moshchuk, Dunn, Livshits, Wang, & Ofek, 2013] [Roesner, Molnar, Moshchuk, Kohno, & Wang, 2014] [Templeman, Korayem, Crandall, & Kapadia, 2014] [Raval, Srivastava, Razeen, Lebeck, Machanavajjhala, & Cox, 2016]

#### **AR Security Research Context**



[Jana, Molnar, Moshchuk, Dunn, Livshits, Wang, & Ofek, 2013] [Roesner, Molnar, Moshchuk, Kohno, & Wang, 2014] [Templeman, Korayem, Crandall, & Kapadia, 2014] [Raval, Srivastava, Razeen, Lebeck, Machanavajjhala, & Cox, 2016] [Lebeck, Kohno, & Roesner, 2016] [Lebeck, Ruth, Kohno, & Roesner, 2017] [Ahn, Gorlatova, Naghizadeh, Chiang, & Mittal, 2018]







#### Amazing new technology...

... what could possibly go wrong?













#### **Precursors Today**

In VR:

- Sexual harassment occurs between player avatars
- Offensive remarks and standing in personal space is a meme

### **Precursors Today**

In VR:

- Sexual harassment occurs between player avatars
- Offensive remarks and standing in personal space is a meme

In smartphone AR:

- Virtual "Balloon Dog" sculpture vandalized in Snapchat
- Unauthorized AR content in MoMA Picasso exhibit



# Goal: Design multi-user AR security and privacy primitives

Opt-in, co-located: Paintball



Opt-in, co-located: Paintball

Opt-in, not co-located: Multi-Team Whiteboards



Opt-in, co-located: Paintball

Opt-in, not co-located: Multi-Team Whiteboards

Opt-out, co-located: **Community Art** 







Scope: multiple users of a single application Untrustworthy users may attempt to:

Scope: multiple users of a single application Untrustworthy users may attempt to:

1. Share unwanted AR content with other users



Scope: multiple users of a single application Untrustworthy users may attempt to:

- 1. Share unwanted AR content with other users
- 2. See private AR content belonging to another user



Scope: multiple users of a single application Untrustworthy users may attempt to:

- 1. Share unwanted AR content with other users
- 2. See private AR content belonging to another user
- 3. Perform unwanted manipulations on AR content belonging to another user



# Goal: Design multi-user AR security and privacy primitives that protect users from each other



Goal: Design *functionality-friendly* multi-user AR security and privacy primitives that protect users from each other







• Both involve attaching virtual content to users



• Both involve attaching virtual content to users

• Bad vs. good is dependent on application semantics



 Both involve attaching virtual content to users

• Bad vs. good is dependent on application semantics

• Cannot distinguish these in a general-purpose solution



Goal: Design functionality-friendly multi-user AR security and privacy primitives that *help developers* to protect users from each other Goal: Design *functionality-friendly* multi-user AR security and privacy primitives that *help developers* to *protect users from each other* 

#### Approach: App-Level Developer Toolkit

- Benefit: packaging controls behind an API reduces developer burden
- Benefit: lack of reliance on OS support facilitates ease of deployment in practice
- Benefit: opens possibility of cross-platform compatibility
- Limitation: cannot protect against misuse or abuse by app developer

|                     | Outbound sharing controls | Inbound sharing controls |
|---------------------|---------------------------|--------------------------|
| What and with whom? |                           |                          |
| Where?              |                           |                          |
| How much?           |                           |                          |

|                     | Outbound sharing controls         | Inbound sharing<br>controls |
|---------------------|-----------------------------------|-----------------------------|
| What and with whom? | Permission<br>management          | Two-party sharing consent   |
| Where?              | Location coupling                 | Personal space              |
| How much?           | Private content in a shared world | Clutter management          |

|                     | Outbound sharing controls         | Inbound sharing<br>controls |
|---------------------|-----------------------------------|-----------------------------|
| What and with whom? | Permission<br>management          | Two-party sharing consent   |
| Where?              | Location coupling                 | Personal space              |
| How much?           | Private content in a shared world | Clutter management          |

Key challenge: integration with physical 3D space

|                     | Outbound sharing controls         | Inbound sharing<br>controls |
|---------------------|-----------------------------------|-----------------------------|
| What and with whom? | Permission<br>management          | Two-party sharing consent   |
| Where?              | Location coupling                 | Personal space              |
| How much?           | Private content in a shared world | Clutter management          |

Key challenge: integration with physical 3D space





Left user's view: virtual content obscured





Left user's view: virtual content obscured

Right user's view: no behavioral cue



#### Solution: Ghosting

User's view:

John Doe: This is a reminder that your credit card payment is overdue.



Others' view:



#### Solution: Ghosting

Left user's view: full virtual content

#### John Doe: This is a reminder that your credit card payment is overdue.

#### Right user's view: behavioral cue

#### Implementation: ShareAR

- App-level library written for Microsoft HoloLens
- Assumes Unity development environment
- Network shim layer uses Microsoft MixedRealityToolkit Sharing; can be swapped out to use another networking solution



1. Analysis of compatibility with existing design recommendations

- 1. Analysis of compatibility with existing design recommendations
- 2. Construction of representative case study applications

- 1. Analysis of compatibility with existing design recommendations
- 2. Construction of representative case study applications







- 1. Analysis of compatibility with existing design recommendations
- 2. Construction of representative case study applications
- 3. Assessment of case study applications' security properties







- 1. Analysis of compatibility with existing design recommendations
- 2. Construction of representative case study applications
- 3. Assessment of case study applications' security properties
- 4. Performance measurement, scaling with number of users and number of objects







Continued evaluation in practice:

• 2 undergraduates this summer building apps using ShareAR



Henry Bowman

- Toolkit available for other developers and researchers to download; looking for further feedback from practical use
- Visit **arsharingtoolkit.com** to try it out



AJ Kruse

## Summary

**Multi-user AR security** is a topic that warrants the attention of the security community.

**Security is not enough**: practicality requires building security solutions based on functionality requirements.

#### This work contributes:

- A set of goals for a multi-user AR security framework,
- A design that meets those goals, and
- An **implementation** that helps multi-user AR app developers in practice to achieve functionality and security.



#### Acknowledgements





Franziska Roesner

Tadayoshi Kohno







Bowman

AJ Kruse

Security and Privacy Lab

Funders

#### arsharingtoolkit.com Project website:

Questions? Kimberly Ruth – kcr32@cs.washington.edu