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Introduction



Machine Learning in Security

• Detection is a fundamental problem in cybersecurity.

• e.g. Malware, intrusion, spam, phish

• Natural to use Machine Learning (ML) for these applications.
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Adversarial Evasion Problem

• ML-based techniques are often susceptible to adversarial examples at

test time.

• Attackers can manipulate malicious samples to look benign and fool

a classifier.
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Realizable Attacks

• Modify the actual entity.

• e.g., produce a valid PDF file or executable file.

• Features are subsequently extracted for ML.

• Have actual malicious effect (e.g., verified by a sandbox) but the

feature vector is classifed as benign.
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Feature Space Attacks

• An abstraction of realizable attacks.

• Directly work on features instead of entities. May not be realizable.

• Use an `p norm to measure the cost of modifying original examples.
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Robust ML

• Essentially most approaches for robust ML leverage feature-space

attack models. e.g., robust optimization, adversarial training.
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Motivation: Is Robust ML really robust?

• Suppose we learn a Robust ML against a feature space attack

model. Is it robust against realizable attacks?
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Contribution

• Model Validation: evalute the robustness of ’Robust ML’ against

realizable attacks.

• Robust ML using feature-space models may fail to provide adequate

robustness against realizable attacks.

• Model Refinement: ’fix’ the feature-space attack models by using

conserved features.

• Generalized Robustness: explore to which extent ML robustness

can be generalized to multiple distinct realizable attacks.
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Methodology and Experiments



A Case Study on PDF Malware Detectors

• Content-based detectors: use features based on content

information (e.g. size of a PDF file)

• PDFRate-R: 135 normalized features (real-valued)

• PDFRate-B: 135 binarized features

• Structure-based detectors: use binary features based on existence

of a collection of object paths

• SL2013: 6,087 paths

• Hidost: 961 paths
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Attacks and Defense

• Realizable attack: EvadeML (Xu et al., NDSS).

• Automatically evades a PDF classifier by using genetic programming.

• Works on both structure- and content-based detectors.

• Feature-space attack model: multi-objective optimization.

• The modified feature vector is predicted as benign as possible.

• The modification cost (measured with an `p norm) is minimized.

• General defense: iterative retraining.

• Iteratively uses an attack to produce adversarial examples, then adds

them into training data and retrain.

• Works for both realizable and feature-space attacks.
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Model Validation: Framework

• Evaluation Metrics

• Adversarial data: robustness = 1 - success rate of EvadeML

• Clean data: ROC (receiver operating characteristic) curve.
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Model Validation: Real-valued and Content-based
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Figure 1: Left: evasion robustness. Right: ROC curve.

• Original: 2% evasion robustness.

• After defense: ∼100% evasion robustness.

• Robust ML with feature-space model works but degrades

performance on clean data!
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Model Validation: Structure-based
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Figure 2: Left: evasion robustness. Right: ROC curve.

• Original: 2% evasion robustness.

• Defense using EvadeML: 98% evasion robustness.

• Feature-space Robust ML: 70% evasion robustness and degradation

on clean data.

• Robust ML using feature-space models is not perfect. Can we fix it

by creating a minimal anchoring?
12



Model Refinement: Conserved Features

• Conserved features: a subset of features which compromise

malicious functionality if they are removed.

• Paths to objects which contain malicious codes.

• Paths objects which break the PDF if they are removed.

• Identifying conserved features: systematically manipulating each

object in a PDF file and checking the maliciousness.

• Existence of conserved features: we identified 4∼8 conserved

features for each detector.

• Feature-space attacks with conserved features: conserved features

are preserved in evasive instances.
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Model Refinement: Binarized Content-based
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Figure 3: Left: evasion robustness. Right: ROC curve.

• Defense using EvadeML: 100% evasion robustness.

• Feature-space Robust ML: 100% evasion robustness and

performance degradation on clean data.

• Feature-space Robust ML with conserved features: 100% evasion

robustness and improves ROC.
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Model Refinement: Structure-based
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Figure 4: Left: evasion robustness. Right: ROC curve.

• Defense using EvadeML: 98% evasion robustness.

• Feature-space Robust ML: 70% evasion robustness and performance

degradation on clean data.

• Feature-space Robust ML with conserved features: 100% evasion

robustness and significant improvement on clean data.
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Generalized Robustness

So far, evaluation and baseline defense used EvadeML.

• Is ML hardened with EvadeML effective against other realizable

attacks?

• Is ML hardened with a feature-space model of attacks (using

conserved features) generally effective against realizable attacks?
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Generalized Robustness: Mimicry+

Realizable attack on content-based classifiers

An improvement of Mimicry Attack (Srndic & Laskov, Oakland).
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Figure 5: Left: real-valued. Right: binarized.

• Hardening against EvadeML may fail to be robust to Mimicry+.

• Robust ML (w/o conserved features) is still robust to Mimicry+.
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Generalized Robustness: Reverse Mimicry

Realizable attack that requires zero knowledge of target classifier

(Maiorca et al., ASIACCS)
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Figure 6: Left: real-valued content-based. Middle: binarized content-based.

Right: structure-based

• Hardening against EvadeML may fail to be robust to Reverse

Mimicry.

• Robust ML w/ conserved features is still robust to Reverse Mimicry.
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Generalized Robustness: Custom Attack

Exploitation of a feature extraction bug of the content-based

classifiers.
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Figure 7: Left: real-valued. Right: binarized.

• Defeats detector hardened using EvadeML.

• Defeats conserved features of binarized content-based detector.

• All feature-space approaches remain robust.
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Conclusion



Summary

• Robust ML methods which assume direct modification of features

and measures cost of adversarial noise as norm are sometimes, but

not always fully effective against real attacks.

• We can fix the model by identifying and using conserved features to

anchor the abstract attack model in the problem domain.

• Robust ML using feature space models (after the fix) exhibit more

general robustness than methods hardened only against a particular

(strong, adaptive) realizable attack.
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Questions?
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