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Ethereum Blockchain



Ethereum Accounts

Externally Owned Account Contract Account
q Address
q Balance

q Address
q Balance
q Code
q Storage
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Ethereum Smart Contracts

Developer Solidity Compiler Smart Contract

6080604052348015600f
57600080fd5b50600436
1060285760003560e01c
806319ff1d2114602d575
B600080fd5b603360a…



Ethereum Virtual Machine

EVM

q Turing complete
q Register-less, 256-bit, stack-based VM

q Over 100 instructions:

q Stack instructions:
PUSH, SWAP, …

q Arithmetic instructions:
ADD, SUB, MUL, …

q Memory instructions:
SLOAD, SSTORE, …

q Control-flow instructions:
JUMP, JUMPI, …

q Contract instructions:
CALL, SELFDESTRUCT, …

q Error handling instructions:
REVERT, INVALID, …



Exploiting
Smart Contracts



Attacks on Smart Contracts



Automated Exploit Generation



Limitations of a Reactive Approach

q Attackers are required to scan millions of smart contracts to finds bugs.

q Finding exploitable bugs in smart contracts is becoming more challenging.

“Why should I spend time looking for victims, 
if I can just let the victims come to me?”



Smart Contract
Honeypots



What are Smart Contract Honeypots?

q Smart contracts that look vulnerable but actually are not.

q Idea:

Make users believe that they can exploit a smart contract by sending funds to it, 
while in reality only the smart contract creator is be able to retrieve them.



Multiplicator Honeypot

Trap

Bait

!! Balance = Previous Balance + Transaction Value !!



Multiplicator Honeypot



CryptoRoulette Honeypot

Bait

Trap



CryptoRoulette Honeypot



Honeypot Phases

Attacker Honeypot

1) Deployment

3) Withdrawal
2) Exploitation

Victim



Why Do Honeypots Work?

q People actively look for exploitable smart contracts.

q Complexity of the Ethereum ecosystem.



Detecting
Honeypots



Taxonomy of Honeypots

q Collected 24 honeypot smart contracts from public sources on the Internet.

q Extracted 8 different techniques, each exploiting a feature (“bug”) on a particular level of Ethereum.



HoneyBadger Design



Symbolic Analysis

q Based on Luu et al.’s symbolic execution 
engine Oyente [CCS ‘16].

q Constructs control flow graph and executes
every instruction symbolically.

q Our symbolic execution does not ignore 
infeasible paths.

q Collects meta information about:

q Storage writes !
q Infeasible basic blocks "#
q Arithmetic operations $

q Execution paths %
q Feasible basic blocks &#
q Contract calls '



Cash Flow Analysis

q Discard contracts that cannot receive 
and transfer funds.

q Receiving funds:
q ∃ " ∈ $: &'('&) ∉ "
q We use Z3 to verify that +, > 0 is satisfiable 

under ".

q Transferring funds:

q Explicitly (e.g. transfer): ∃ / ∈ 0: /, > 0 ∨ /, 23 3456782/

q Implicitly (i.e. selfdestruct): ∃ " ∈ $: 9':;<'9)&=0) ∈ "



Honeypot Analysis

q Consists of several sub-components.

q Each sub-component is responsible for 
the detection of a particular technique.

q Honeypot techniques are detected via 
simple heuristics:

q Ex.: Balance Disorder

∃ " ∈ $: " ∈ &' ∧ ") = + &, - + &)



Evaluation



Dataset

q We crawled 2,019,434 contracts from August 7, 2015 to October 12, 2018.

q 151,935 contracts are unique in terms of bytecode (7.52%).

q We run HoneyBadger on the set of unique smart contracts.



Results

q 48,487 contracts have been identified as 
cash flow contracts (32%).

q Our tool detected 460 unique honeypots 
(690 on the 2 million).

q Analysis took about 2 minutes per contract 
(91% code coverage).
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Validation

q Manual inspection of the source code for 
the 460 flagged contracts.

q We managed to collect the source code for 
323 contracts (70% of 460).

q Validation shows that 282 contracts are 
true positives (87% precision).



Honeypot
Insights



Methodology

q Analyzed all transactions of the 282 true positives.

q Used simple heuristics to label addresses as:
q Attacker:

1) created the contract.
2) first to send funds to the contract.
3) received more funds than actually spent.

q Victim: not labeled as attacker and spent more funds than actually received.

q Used this to label honeypots as:
q Successful: a victim has been detected.
q Aborted: the balance is zero and no victim has been detected.
q Active: the balance is larger than zero and no victim has been detected.



Success Rate

q 71% manage to trap only one victim.

q Users potentially look at transactions.

q Majority are successful within the first 24 hours.

q Users quickly attempt to exploit honeypots.
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Diversity

q Bytecode of honeypots is vastly different even within the same technique.
q Signature-based detection methods are rather ineffective.



Popularity

q First deployment in January 2017 with highest activity in February 2018.
q Honeypots are an emerging and increasing trend.
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Profitability

q A total profit of 257.25 ether has been made through honeypots.
q An accumulated profit of $90,118 at the time of withdrawal.



Conclusion



Conclusion

q Honeypots are an emerging new type of fraud and requires further investigation.

q We propose a taxonomy and a tool called HoneyBadger, that detects honeypots at a large scale.

q We identified 690 honeypots with a precision of 87%.

q We provide interesting insights: 240 victims and $90,000 profit.



Questions?

All code & data is available on GitHub:

https://github.com/christoftorres/HoneyBadger

More information at:

https://honeybadger.uni.lu

Supported by:

https://github.com/christoftorres/HoneyBadger
https://honeybadger.uni.lu/

