
University of Luxembourg
Interdisciplinary Centre for Security,

Reliability and Trust

The Art of The Scam
Demystifying Honeypots in Ethereum Smart Contracts
Christof Ferreira Torres, Mathis Steichen and Radu State

Ethereum
Crash Course

Ethereum Blockchain

Ethereum Accounts

Externally Owned Account Contract Account
q Address
q Balance

q Address
q Balance
q Code
q Storage

$

$

$

Ethereum Smart Contracts

Developer Solidity Compiler Smart Contract

6080604052348015600f
57600080fd5b50600436
1060285760003560e01c
806319ff1d2114602d575
B600080fd5b603360a…

Ethereum Virtual Machine

EVM

q Turing complete
q Register-less, 256-bit, stack-based VM

q Over 100 instructions:

q Stack instructions:
PUSH, SWAP, …

q Arithmetic instructions:
ADD, SUB, MUL, …

q Memory instructions:
SLOAD, SSTORE, …

q Control-flow instructions:
JUMP, JUMPI, …

q Contract instructions:
CALL, SELFDESTRUCT, …

q Error handling instructions:
REVERT, INVALID, …

Exploiting
Smart Contracts

Attacks on Smart Contracts

Automated Exploit Generation

Limitations of a Reactive Approach

q Attackers are required to scan millions of smart contracts to finds bugs.

q Finding exploitable bugs in smart contracts is becoming more challenging.

“Why should I spend time looking for victims,
if I can just let the victims come to me?”

Smart Contract
Honeypots

What are Smart Contract Honeypots?

q Smart contracts that look vulnerable but actually are not.

q Idea:

Make users believe that they can exploit a smart contract by sending funds to it,
while in reality only the smart contract creator is be able to retrieve them.

Multiplicator Honeypot

Trap

Bait

!! Balance = Previous Balance + Transaction Value !!

Multiplicator Honeypot

CryptoRoulette Honeypot

Bait

Trap

CryptoRoulette Honeypot

Honeypot Phases

Attacker Honeypot

1) Deployment

3) Withdrawal
2) Exploitation

Victim

Why Do Honeypots Work?

q People actively look for exploitable smart contracts.

q Complexity of the Ethereum ecosystem.

Detecting
Honeypots

Taxonomy of Honeypots

q Collected 24 honeypot smart contracts from public sources on the Internet.

q Extracted 8 different techniques, each exploiting a feature (“bug”) on a particular level of Ethereum.

HoneyBadger Design

Symbolic Analysis

q Based on Luu et al.’s symbolic execution
engine Oyente [CCS ‘16].

q Constructs control flow graph and executes
every instruction symbolically.

q Our symbolic execution does not ignore
infeasible paths.

q Collects meta information about:

q Storage writes !
q Infeasible basic blocks "#
q Arithmetic operations $

q Execution paths %
q Feasible basic blocks &#
q Contract calls '

Cash Flow Analysis

q Discard contracts that cannot receive
and transfer funds.

q Receiving funds:
q ∃ " ∈ $: &'('&) ∉ "
q We use Z3 to verify that +, > 0 is satisfiable

under ".

q Transferring funds:

q Explicitly (e.g. transfer): ∃ / ∈ 0: /, > 0 ∨ /, 23 3456782/

q Implicitly (i.e. selfdestruct): ∃ " ∈ $: 9':;<'9)&=0) ∈ "

Honeypot Analysis

q Consists of several sub-components.

q Each sub-component is responsible for
the detection of a particular technique.

q Honeypot techniques are detected via
simple heuristics:

q Ex.: Balance Disorder

∃ " ∈ $: " ∈ &' ∧ ") = + &, - + &)

Evaluation

Dataset

q We crawled 2,019,434 contracts from August 7, 2015 to October 12, 2018.

q 151,935 contracts are unique in terms of bytecode (7.52%).

q We run HoneyBadger on the set of unique smart contracts.

Results

q 48,487 contracts have been identified as
cash flow contracts (32%).

q Our tool detected 460 unique honeypots
(690 on the 2 million).

q Analysis took about 2 minutes per contract
(91% code coverage).

22

75

11 5

80

382

14

101

22

69

10 5

55

223

13

63

BA LA NCE D IS
ORDER

IN
HERIT

A NCE D IS
ORDER

S KIP
 EM

PTY S
TRIN

G LI T
ERA L

TYPE DEDUCT IO
N OV ERF LOW

UNIN
IT

I L
I S

ED S TRUCT

H ID
DEN S TA TE U

PDA TE

H ID
DEN TRA NS F ER

S TRA W
 M

A N C
ONTRA CT

All Contracts Unique Contracts

Validation

q Manual inspection of the source code for
the 460 flagged contracts.

q We managed to collect the source code for
323 contracts (70% of 460).

q Validation shows that 282 contracts are
true positives (87% precision).

Honeypot
Insights

Methodology

q Analyzed all transactions of the 282 true positives.

q Used simple heuristics to label addresses as:
q Attacker:

1) created the contract.
2) first to send funds to the contract.
3) received more funds than actually spent.

q Victim: not labeled as attacker and spent more funds than actually received.

q Used this to label honeypots as:
q Successful: a victim has been detected.
q Aborted: the balance is zero and no victim has been detected.
q Active: the balance is larger than zero and no victim has been detected.

Success Rate

q 71% manage to trap only one victim.

q Users potentially look at transactions.

q Majority are successful within the first 24 hours.

q Users quickly attempt to exploit honeypots.
7 17

7

1 11 49
3 8

3 1

0

1
8

10

0
5

10 23

2

2 13
75

9
17

0%

20%

40%

60%

80%

100%

BD ID SESL TDO US HSU HT SMC

Successful Active Aborted

Diversity

q Bytecode of honeypots is vastly different even within the same technique.
q Signature-based detection methods are rather ineffective.

Popularity

q First deployment in January 2017 with highest activity in February 2018.
q Honeypots are an emerging and increasing trend.

0

5

10

15

20

25

30

35

40

Augu
st 2

015

Octo
be

r 2
015

Dece
mber 2

015

Fe
bru

ary
20

16

April
201

6

June
 20

16

Augu
st 2

016

Octo
be

r 2
016

Dece
mber 2

016

Fe
bru

ary
20

17

April
201

7

June
 20

17

Augu
st 2

017

Octo
be

r 2
017

Dece
mber 2

017

Fe
bru

ary
20

18

April
201

8

June
 20

18

Augu
st 2

018

Octo
be

r 2
018

N
um

be
r o

f c
on

tr
ac

ts

Date

BD ID SESL TDO US HSU HT SMC

Profitability

q A total profit of 257.25 ether has been made through honeypots.
q An accumulated profit of $90,118 at the time of withdrawal.

Conclusion

Conclusion

q Honeypots are an emerging new type of fraud and requires further investigation.

q We propose a taxonomy and a tool called HoneyBadger, that detects honeypots at a large scale.

q We identified 690 honeypots with a precision of 87%.

q We provide interesting insights: 240 victims and $90,000 profit.

Questions?

All code & data is available on GitHub:

https://github.com/christoftorres/HoneyBadger

More information at:

https://honeybadger.uni.lu

Supported by:

https://github.com/christoftorres/HoneyBadger
https://honeybadger.uni.lu/

