
*Secure Communication and Computer Systems Lab

Texas A&M University

Iframes/Popups Are Dangerous in Mobile WebView:

Studying and Mitigating

Differential Context Vulnerabilities

Guangliang Yang, Jeff Huang, and Guofei Gu

Iframes/Popups in Regular Browsers

 In modern web apps, iframes/popups are

frequently used. Their security has been well

studied in regular browsers.

Ads

Ads

Iframes/Popups in Regular Browsers

 In modern web apps, iframes/popups are

frequently used. Their security has been well

studied in regular browsers.

 However, the security study on a new web

environment, called mobile WebView, is still

missing.

WebView

 An embedded browser-like UI

component in mobile apps

(i.e., hybrid apps)

 Easy to use and powerful

 Frequently used by mobile apps

 Integrated in ~80% Android apps

Motivation & Our Work

 WebView provides a totally new working environment

for iframes/popups.

 => Are iframes/popups still safe in WebView?

Motivation & Our Work

 We conduct the first security study in Android WebView

=> Differential Context Vulnerabilities (DCVs)

 We assess the security impacts on real-world apps with

DCV-Hunter:

 Facebook, Instagram, Facebook Messenger, Google News,

Skype, Uber, Yelp, and U.S. Bank …

 We propose a novel multi-layer defense solution.

Security Study & DCV

Threat Model

 Mobile code is benign

 WebView may contain untrusted content

 The main (top) frame is trusted

 Iframes/popups loading third-party content are untrusted.

Web

Server

Benign Hybrid App

Mobile

WebView

Sensitive

Functionalities

& Data

Adversaries

Iframe

Popup

Web/Mobile Bridges

Security Study

Browsers

WebView

UI + Programming Features

Possible Attacks: Untrusted iframes/popups may trigger

and leverage these inconsistencies to obtain risky abilities.

Inconsistencies Between Browsers and WebView

Inconsistencies Between Browsers and WebView

 UI Design Styles

Security Issues & Concrete Attacks

 The lack of the address bar

 => Main-Frame Navigation Attacks: Untrusted

iframes/popups launch phishing attacks by secretly

navigating the main frame.

 Permissive navigation policy

 Any sub-frame can navigate the main frame

 Not harmful in regular browsers

 iframe sandbox + address bar

 But dangerous in WebView

Security Issues & Concrete Attacks

 Example: A banking app

Security Issues & Concrete Attacks

 Example: A banking app

Security Issues & Concrete Attacks

 Example: A banking app

huntington.com
Untrusted content

(e.g., 3rd-party tracking)

Secretly

navigation

Main frame Sub-frame

WebView

window.open(“http://attacker.com”, “_top”)

Security Issues & Concrete Attacks

 Example: A banking app

Security Issues & Concrete Attacks

 The lack of the tab bar

 Principles

 Each web window is rendered by an independent WebView

UI

 => WebView UI (WUI) Redressing Attacks:

Untrusted iframes/popups launch phishing attacks by

creating a malicious WUI and overlapping begin WUI

with the new WUI.

Security Issues & Concrete Attacks

 WUI Redressing Attacks

Benign

Web Page

Untrusted

Sub-Frame

WUI #1

Security Issues & Concrete Attacks

 WUI Redressing Attacks

 Possible Attack #1: Overlap attack

 Manipulating the rendering order of multiple WUIs

Benign

Web Page

Untrusted

Sub-Frame

WUI #1

Pop-up Untrusted

Web Content

WUI #2

Untrusted

Web Content

Security Issues & Concrete Attacks

 WUI Redressing Attacks

 Possible Attack #2: Closure attack

Untrusted

Sub-Frame

WUI #2 WUI #1

Benign

Web Page

Untrusted

Web Content

Security Issues & Concrete Attacks

 WUI Redressing Attacks

 Possible Attack #2: Closure attack

Untrusted

Sub-Frame

WUI #2 WUI #1

Benign

Web Page

window.close

Security Issues & Concrete Attacks

 Example: a flight searching app

Security Issues & Concrete Attacks

 Example: a flight searching app

Security Issues & Concrete Attacks

 Example: a flight searching app

Security Issues & Concrete Attacks

 Example: a flight searching app

Inconsistencies Between Browsers and WebView

 Programming features

 WebView enables many programming APIs to let developers

customize their own WebView instances.

WebView.setSupportMultipleWindows(true/false)

Security Issues & Concrete Attacks

 WebView customization Regular web behaviors

 => Privileged main-frame navigation attack

 WebView.SupportMultipleWindows = false

 A

 Iframe sandbox?

No!

DCV Summary

 WebView UI Redressing Attacks

 Creation & Closure

 Main-Frame Navigation Attacks

 Traditional & Privileged

 Origin Hiding Attacks

 Existing defense solutions are limited to prevent

DCV based attacks.

Phishing

Stealing privacy

& accessing hardware

Security Assessment

DCV-Hunter: Automatic Vulnerability Detection

Security Assessment

 Dataset

 17K most popular free apps from Google Play

 = 32 categories X 540 apps for each category

 Result overview

 11,341 hybrid apps

 4,358 hybrid apps (38.4%) were potentially vulnerable, including

 13,384 potentially vulnerable WebView instances and

 27,754 potential vulnerabilities

 19.5 Billion downloads

 Low false positive

Security Assessment

Security Assessment

 Many high-profile apps are impacted

 Facebook, Instagram, Facebook Messenger, Google News,

Skype, Uber, Yelp, WeChat, Kayak, ESPN, McDonald’s,

Kakao Talk, and Samsung Mobile Print

 Third-party development libraries

 Facebook Mobile Browser & Facebook React Native

 Leading password management apps

 dashlane, lastpass, and 1password

 Popular banking apps

 U.S. bank, Huntington bank, and Chime mobile bank

Case Studies

 Facebook Messenger

 Providing its own address bar?

 No! pixel & race-condition problems

Case Studies

 Facebook Messenger

Case Studies

 Facebook Messenger

 WUI redressing attack

Ebay.com

Case Studies

 Facebook Messenger

 WUI redressing attack

192.168.1.4

Pop-up

Case Studies

 Facebook Messenger

 Blended attack: WUI redressing attack + Traditional

navigation attack

192.168.1.4

Pop-up

Case Studies

 Facebook Messenger

 Blended attack: WUI redressing attack + Traditional

navigation attack

Pop-up

Ebay.com

2) Refresh the old WUI!

Case Studies

 Facebook Messenger

 Blended attack: WUI redressing attack + Traditional

navigation attack

Ebay.com

Demos: https://sites.google.com/view/dcv-attacks

https://sites.google.com/view/dcv-attacks
https://sites.google.com/view/dcv-attacks
https://sites.google.com/view/dcv-attacks
https://sites.google.com/view/dcv-attacks
https://sites.google.com/view/dcv-attacks

DCV Mitigation

DCV Mitigation

 Mitigating the DCV issues from the root (i.e.,

inconsistencies)

 Reducing the inconsistencies between browsers and

WebView

 Floating URL address bar

 Validating sensitive operations (e.g., popup creation)

 Evaluation

 Our defense solution is

 Effective

 Compatible (90% Android devices)

 Low-overhead

Conclusion

Conclusion

 WebView attracted more and more attention.

 Iframe/popup behaviors were well studied in regular browsers,

but rarely understood in the new web environment of WebView.

 We filled the gap by identifying a novel class of vulnerabilities

(DCVs), assessing the security impacts with a novel detection

tool (DCV-Hunter), and mitigating the DCV issues with a multi-

layer defense solution.

Thanks!

Inconsistencies Between Browsers and WebView

 Programming features

Android.Sensitive-

Function()

Inconsistencies Between Browsers and WebView

 Programming features

WebView.Support-

MultipleWindow()

Inconsistencies Between Browsers and WebView

 Programming features

WebView.loadUrl()

