
Tong Zhang1, Wenbo Shen2, Dongyoon Lee3, Changhee Jung4,
Ahmed M. Azab5, Ruowen Wang5

1 Virginia Tech, 2 Zhejiang University, 3 Stony Brook University, 4 Purdue University,
5 Samsung Research America, now at Google

PeX: A Permission Check
Analysis Framework for
Linux Kernel

1

2

Permission Control in Linux Is Complex

1. DAC (Discretionary Access Controls)

3. LSM (Linux Security Module)

e.g., SELinux, AppArmor

2. Capabilities

/bin/ping only has cap_net_raw (no more suid, full root)

e.g., drwxr-xr-x for /root

Many permission checks are placed in an ad-hoc manner,
hard to guarantee all of them are placed correctly

38 in Linux Kernel v4.18.5

190 hooks in Linux Kernel v4.18.5

x

3

prctl(“new”);write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

SyS_prctl(“new”)

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

Privileged functionPermission check function

Example: Missing Permission Check is a Problem
Two methods to change a process name

Method 1: Use /proc/pid/comm file

Method 2: Use prctl system call

Goal: design a static analysis tool to find out
permission check bugs
(missing, inconsistent and redundant
permission checks)

bypass

4

prctl(“new”);write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

SyS_prctl(“new”)

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

ICFG

Path Can Be Represented in Interprocedural Control Flow Graph

5

Traverse Interprocedural Control Flow Graph to Find Bugs

Permission Check Function

Privileged Function

Explore ICFG for all user
reachable path to find out bugs

First thing: we need to build an ICFG

Good Path
Bad Path

6

Challenge 1: Indirect Calls Makes Precise ICFG Hard to Build

Kernel frequently uses function pointer to call real driver implementation

115K indirect callsites in Linux Kernel v4.18.5

file->f_op->write_iter

• ext4_file_write_iter
• btrfs_file_write_iter
• cifs_file_write_iter
• nfs_file_write

Indirect Call

VFS layer Network Layer

sk->sk_prot->sendmsg

• ipv4 inet_send_msg
• ipv6 inet_send_msg

7

ssize_t Write (struct file *, char __user *, size_t , loff_t *)
ssize_t Read (struct file *, char __user *, size_t , loff_t *)

Challenge 1: No Precise and Scalable Solution
• Typed based approach (function signature) – imprecise
ssize_t __vfs_write(struct file* file,…)
{

file->f_op->write(file, p, count, pos);
}

• Advanced pointer analysis: not scalable

They do not scale for Linux kernel (~16 MLoC)
SVF2(used by K-Miner1,a static tool kernel analysis)

K-Miner: Gens, David, et al. "K-Miner: Uncovering Memory Corruption in Linux." NDSS. 2018.
SVF: Sui, Yulei, and Jingling Xue. "On-demand strong update analysis via value-flow refinement." Proceedings of the 2016 24th ACM
SIGSOFT international symposium on foundations of software engineering. ACM, 2016.

Can be applied to a smaller codebase, which harms soundness

x

8

Challenge 2: Three Other Things We Don’t Know

write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

Privileged function

Permission check function

Indirect Call
Direct Call

1. which function is permission check function

2. which function is privileged function
3. which permission check function is needed
for a privileged function

9

PeX Workflow

KIRIN
Indirect Call

Pointer Analysis
ICFG

Privileged
Function
Detection

Permission
Check

Wrapper
Detection

Permission
Check Error

Detection

Kernel
Source

(IR)

Challenge 1

Challenge 2

Permission check functions
provided by user

Bug Report

10

KIRIN Observation: Most Indirect Calls(~90%) in Linux Kernel
Use Well Defined Interface

Observation: kernel has well defined interface to connect different component together

Filesystem

struct file_operations {
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t,
loff_t *);
ssize_t (*write) (struct file *, char __user *, size_t,
loff_t *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);
…
}

Network protocol

struct proto_ops {
int (*connect) (struct socket *sock, struct sockaddr

*vaddr, int sockaddr_len, int flags);
int (*listen) (struct socket *sock, int len);
int (*sendmsg) (struct socket *sock, struct msghdr

*m, size_t total_len);
int (*recvmsg) (struct socket *sock, struct msghdr

*m, size_t total_len, int flags);
…
}

11

KIRIN Step 1: Trace and Collect All Struct Initializations

file_operations proc_pid_set_comm_operations
{

.open = comm_open,

.read = seq_read,

.write = comm_write,

.llseek = seq_lseek,

.release = single_release,
}

KIRIN trace all statically and dynamically initialized struct

…
.write = ext4_file_write
.write = vfat_file_write
…

ssize_t __vfs_write(struct file* file,…)
{

file->f_op->write

12

KIRIN Step 2: Match Indirect Call Target Using Interface

struct file_operations {
…

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, char __user *, size_t, loff_t *);

…
}

Calling write function in struct file_operations

Possible callee: comm_write

Step 2 analyze the callsite

1.Match Interface
2.Match member

✔ better precision than type-based method

✔ better scalability than SVF because the
analys is simpler

13

PeX Workflow

KIRIN
Indirect Call

Pointer Analysis
ICFG

Privileged
Function
Detection

Permission
Check

Wrapper
Detection

Permission
Check Error

Detection

Kernel
Source

(IR)

Challenge 1

Challenge 2

Permission check
functions

provided by user Bug Report

14

Dominator Based Privileged Function Detection

write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

Privileged function call

Permission check function

1. User reachable path, starting from system call

2. A callsite protected by the permission check

- the dominator analysis

3. Mark callee of the privileged function call as

privileged function

bar

foo

x

callsite

15

Traverse ICFG for Permission Check Error Detection

Indirect Call
Direct Call

1. Traverse ICFG for user
reachable path,
starting from system call

2. Find a control flow path
with no permission check
in a backward search
manner

Permission Check Function

Privileged FunctionICFG

Bad Path

x

Implementation and Evaluation

• LLVM/Clang-6

16

• Generate a single-file vmlinux.bc using wllvm

Evaluation

• Linux-v4.18.5

• defconfig(2.4M LoC)

• allyesconfig(15.9MLoC)

Implementation

17

21 21

6

0

5

10

15

20

25

PeX-KIRIN PeX-TYPE PeX-K-Miner

Number of Bugs Detected

ICFG generated by K-

Miner is not sound, so

it detects less bugs

(Imprecise ICFG) (unsound ICFG)

Detection Capability – defconfig (2.4M LoC), PeX-KIRIN is Better

18

Detection Capability – defconfig (2.4M LoC), PeX-KIRIN is Better

72

210

853

218
348

1319

54

196 231

0

200

400

600

800

1000

1200

1400

DAC CAP LSM

Number of Warnings

PeX-KIRIN PeX-TYPE PeX-K-Miner

2. ICFG generated by K-Miner-SVF is unsound, so it generates less warnings
1. ICFG generated by KIRIN is more precise than type approach, so it generates less warnings

Conclusions
• PeX: a static permission check analysis framework for Linux kernel

• KIRIN: kernel call graph analysis

• Permission check functions/Privileged functions and their mappings

• Evaluated Linux kernel v4.18.5 and found 36 permission check bugs

19

Thank you !

20

