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Permission Control in Linux Is Complex

1.  DAC (Discretionary Access Controls)

3.  LSM (Linux Security Module)

e.g., SELinux, AppArmor

2.  Capabilities

/bin/ping only has cap_net_raw (no more suid, full root) 

e.g., drwxr-xr-x for /root

Many permission checks are placed in an ad-hoc manner,
hard to guarantee all of them are placed correctly

38 in Linux Kernel v4.18.5

190 hooks in Linux Kernel v4.18.5

x
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prctl(“new”);write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

SyS_prctl(“new”)

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

Privileged functionPermission check function

Example: Missing Permission Check is a Problem
Two methods to change a process name

Method 1: Use /proc/pid/comm file

Method 2: Use prctl system call

Goal: design a static analysis tool to find out 
permission check bugs
(missing, inconsistent and redundant 
permission checks)

bypass



4

prctl(“new”);write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

SyS_prctl(“new”)

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

ICFG

Path Can Be Represented in Interprocedural Control Flow Graph
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Traverse Interprocedural Control Flow Graph to Find Bugs

Permission Check Function

Privileged Function

Explore ICFG for all user 
reachable path to find out bugs

First thing: we need to build an ICFG

Good Path
Bad Path
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Challenge 1: Indirect Calls Makes Precise ICFG Hard to Build

Kernel frequently uses function pointer to call real driver implementation

115K indirect callsites in Linux Kernel v4.18.5

file->f_op->write_iter

• ext4_file_write_iter
• btrfs_file_write_iter
• cifs_file_write_iter
• nfs_file_write

Indirect Call

VFS layer Network Layer

sk->sk_prot->sendmsg

• ipv4 inet_send_msg
• ipv6 inet_send_msg
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ssize_t Write (struct file *, char __user *, size_t , loff_t *)
ssize_t Read (struct file *, char __user *, size_t , loff_t *)

Challenge 1: No Precise and Scalable Solution
• Typed based approach (function signature) – imprecise
ssize_t __vfs_write(struct file* file,…)
{

file->f_op->write(file, p, count, pos);
}

• Advanced pointer analysis: not scalable

They do not scale for Linux kernel (~16 MLoC)
SVF2(used by K-Miner1,a static tool kernel analysis)

K-Miner: Gens, David, et al. "K-Miner: Uncovering Memory Corruption in Linux." NDSS. 2018.
SVF: Sui, Yulei, and Jingling Xue. "On-demand strong update analysis via value-flow refinement." Proceedings of the 2016 24th ACM 
SIGSOFT international symposium on foundations of software engineering. ACM, 2016.

Can be applied to a smaller codebase, which harms soundness

x
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Challenge 2: Three Other Things We Don’t Know

write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

Privileged function

Permission check function

Indirect Call
Direct Call

1. which function is permission check function

2. which function is privileged function
3. which permission check function is needed 
for a privileged function
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PeX Workflow

KIRIN 
Indirect Call

Pointer Analysis 
ICFG

Privileged 
Function 
Detection 

Permission 
Check 

Wrapper 
Detection 

Permission 
Check Error

Detection 

Kernel
Source

(IR)

Challenge 1

Challenge 2

Permission check functions
provided by user

Bug Report
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KIRIN Observation: Most Indirect Calls(~90%) in Linux Kernel
Use Well Defined Interface

Observation: kernel has well defined interface to connect different component together

Filesystem

struct file_operations {
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, 
loff_t *);
ssize_t (*write) (struct file *, char __user *, size_t, 
loff_t *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);
…
}

Network protocol

struct proto_ops {
int (*connect) (struct socket *sock, struct sockaddr

*vaddr, int sockaddr_len, int flags);
int (*listen) (struct socket *sock, int len);
int (*sendmsg) (struct socket *sock, struct msghdr

*m, size_t total_len);
int (*recvmsg) (struct socket *sock, struct msghdr

*m, size_t total_len, int flags);
…
}
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KIRIN Step 1: Trace and Collect All Struct Initializations

file_operations proc_pid_set_comm_operations
{

.open       = comm_open,

.read       = seq_read,

.write      = comm_write,

.llseek = seq_lseek,

.release    = single_release,
}

KIRIN trace all statically and dynamically initialized struct

…
.write = ext4_file_write
.write = vfat_file_write
…



ssize_t __vfs_write(struct file* file,…)
{

file->f_op->write
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KIRIN Step 2: Match Indirect Call Target Using Interface

struct file_operations {
…

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, char __user *, size_t, loff_t *);

…
}

Calling write function in struct file_operations

Possible callee: comm_write

Step 2 analyze the callsite

1.Match Interface
2.Match member

✔ better precision than type-based method

✔ better scalability than SVF because the 
analys is simpler
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PeX Workflow

KIRIN 
Indirect Call

Pointer Analysis 
ICFG

Privileged 
Function 
Detection 

Permission 
Check 

Wrapper 
Detection 

Permission 
Check Error

Detection 

Kernel
Source

(IR)

Challenge 1

Challenge 2

Permission check 
functions

provided by user Bug Report
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Dominator Based Privileged Function Detection

write(“new”)

SyS_write(“new”)

vfs_write

file->f_op->write

security_file_permission

set_task_comm(“new”)

comm_write(“new”)

Privileged function call

Permission check function

1. User reachable path, starting from system call

2.  A callsite protected by the permission check

- the dominator analysis

3. Mark callee of the privileged function call as 

privileged function

bar

foo

x

callsite
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Traverse ICFG for Permission Check Error Detection

Indirect Call
Direct Call

1. Traverse ICFG for user 
reachable path, 
starting from system call

2. Find a control flow path 
with no permission check 
in a backward search 
manner

Permission Check Function

Privileged FunctionICFG

Bad Path

x



Implementation and Evaluation

• LLVM/Clang-6

16

• Generate a single-file vmlinux.bc using wllvm

Evaluation

• Linux-v4.18.5

• defconfig(2.4M LoC)

• allyesconfig(15.9MLoC)

Implementation
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Number of Bugs Detected

ICFG generated by K-

Miner is not sound, so 

it detects less bugs

(Imprecise ICFG) (unsound ICFG)

Detection Capability – defconfig (2.4M LoC), PeX-KIRIN is Better
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Detection Capability – defconfig (2.4M LoC), PeX-KIRIN is Better
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2. ICFG generated by K-Miner-SVF is unsound, so it generates less warnings
1. ICFG generated by KIRIN is more precise than type approach, so it generates less warnings



Conclusions
• PeX: a static permission check analysis framework for Linux kernel

• KIRIN: kernel call graph analysis

• Permission check functions/Privileged functions and their mappings

• Evaluated Linux kernel v4.18.5 and found 36 permission check bugs
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Thank you !
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