PeX: A Permission Check
Analysis Framework for
Linux Kernel

Tong Zhang', Wenbo Shen?, Dongyoon Lee?, Changhee Jung?,
Ahmed M. Azab®, Ruowen Wang®

1 Virginia Tech, 2 Zhejiang University, 3 Stony Brook University, 4 Purdue University,
> Samsung Research America, now at Google

Permission Control in Linux Is Complex

1. DAC (Discretionary Access Controls)
e.g., drwxr-xr-x for /root
2. Capabilities 38 in Linux Kernel v4.18.5

/bin/ping only has cap_net _raw (no more suid, full root)

3. LSM (Linux Security Module) 190 hooks in Linux Kernel v4.18.5
e.g., SELinux, AppArmor

Many permission checks are placed in an ad-hoc manner,
hard to guarantee all of them are placed correctly 2

Example: Missing Permission Check is a Problem

Two methods to change a process name

write(“new”) prctl(“new”); Method 1: Use /proc/pid/comm file
_*)] \/ Method 2: Use prctl system call
SyS_W”te(new) SyS_prCtl(“neW”)
\
vfs_write
4 Goal: design a static analysis tool to find out
I security file_permission I permission check bugs
(missing, inconsistent and redundant
v
, : permission checks)
file->f_op->write bypass
comm_write(“new”)
R ‘

I set_task_comm(“new”) I | Permission check function II Privileged function:l

Path Can Be Represented in Interprocedural Control Flow Graph

write(“new”) prctl(“new”);
\
SyS_write(“new”) SyS._pretinew’)

\

vfs_write

-

I security file_permission I

v :

file->f_op->write

|

comm_write(“new”) —l

4
I set task_comm(“new”) I ICFG

Traverse Interprocedural Control Flow Graph to Find Bugs

Good Path

/

Bad Path

Explore ICFG for all user
reachable path to find out bugs

First thing: we need to build an ICFG

' Permission Check Function

‘ Privileged Function

Challenge 1: Indirect Calls Makes Precise ICFG Hard to Build

115K indirect callsites in Linux Kernel v4.18.5

Kernel frequently uses function pointer to call real driver implementation

VFS layer

file->f_op->write_iter
1

I

1

v
« ext4 file write iter
» btrfs_file write iter
» cifs_file_write_iter
« nfs_file_write

Network Layer

sk->sk_prot->sendmsg

1
1
1
v

* ipv4 inet_send _msg
* ipv6b inet_send_msg

= = =P |ndirect Call

Challenge 1: No Precise and Scalable Solution

 Typed based approach (function signature) — imprecise
ssize t vfs_ write(struct file* file,...)

{

}
J ssize_t Write (struct file *, char __user *, size_t, loff_t*)

x ssize_t Read (struct file *, char __user *, size_t, loff_t *)

ﬁ|e->f_op->|write(file, p, count, pos);

 Advanced pointer analysis: not scalable
SVF?(used by K-Miner',a static tool kernel analysis)
They do not scale for Linux kernel (~16 MLoC)
Can be applied to a smaller codebase, which harms soundness

K-Miner: Gens, David, et al. "K-Miner: Uncovering Memory Corruption in Linux." NDSS. 2018. 7
SVF: Sui, Yulei, and Jingling Xue. "On-demand strong update analysis via value-flow refinement." Proceedings of the 2016 24th ACM
SIGSOFT international symposium on foundations of software engineering. ACM, 2016.

Challenge 2: Three Other Things We Don’t Know

write(“new”)
‘ 1. which function is permission check function
SHE IR 2. which function is privileged function
J 3. which permission check function is needed
vfs_write for a privileged function

{

I security file _permission I
v
file->f_op->write

===» |ndirect Call

; — Direct Call
comm_write(“new”) ‘ I Permission check function I

I set_task_comm(“new”) | I Privileged function I 8

PeX Workflow

Privileged
= Function =
Detection
Kernel KIRIN Permission
Source = Indirect Call — |CFG =
(IR) Pointer Analysis o (eSS
Detection
Challenge 1 Permission
L Check L]
Permission check functions —_ Wrapper
provided by user Detection
v
Bug Report

Challenge 2

KIRIN Observation: Most Indirect Calls(~90%) in Linux Kernel
Use Well Defined Interface

Filesystem I;I_T_I_T_I;I Network protocol
struct file_operations { SF"UCE proto_ops { §
loff_t (*llseek) (struct file *, off t, int): int ("connect) (struct socket *sock, struct sockaddr
ssize_t (‘read) (struct file *, char __user *, size_t, ~ vaddr, int sockaddr_len, int flags);
loff_t *); int (*listen) (struct socket *sock, int len);
ss&e t (*write) (struct file *, char __user *, size_t, int ("sendmsg) (struct socket “sock, struct msghdr
loff t*_)' T - *m, size_t total_len);
int_(*open) (struct inode *, struct file *): int (.*recvmsg) (str_uct socket “sock, struct msghdr
int (“release) (struct inode *, struct file *); m, size_t total_len, int flags);

10

KIRIN Step 1: Trace and Collect All Struct Initializations

file_operations proc_pid_set comm_operations

{
.open = comm_open,
.read = seq_read,
write | =[comm_write .write = ext4_file_write
llseek =seq_Iseek, .write = vfat_file_write
release = single release,

}

KIRIN trace all statically and dynamically initialized struct

KIRIN Step 2: Match Indirect Call Target Using Interface

Step 2 analyze the callsite V better precision than type-based method

V better scalability than SVF because the
analys is simpler

ssize t vfs_ write(struct file* file,...)

{

file-3f op- Calling write function in struct file_operations

1.Match InterfaCe
[structTile operations | 2.

Possible callee: comm_write

tch member

ssize t (“read) (struct file *dchar user *, size t, loff t*);
ssize t (*write) (struct file *, char user *, size t, loff t¥);

}

12

PeX Workflow

Kernel KIRIN
Source =—» Indirect Call — |CFG m—
(IR) Pointer Analysis
Challenge 1

Permission check

Privileged
Function
Detection

Permission
Check Error
Detection

functions
provided by user

>

Permission
Check
Wrapper
Detection

Challenge 2

v
Bug Report

13

Dominator Based Privileged Function Detection

write(“new”) 1. User reachable path, starting from system call
‘ 2. A callsite protected by the permission check
SyS write(“new”) - the dominator analysis
J 3. Mark callee of the privileged function call as
vfs write privileged function
¥
I security file_permission foo

l !

callsite fiIe->f_oIp->write bar

\/

I Permission check function

comm_write(“new”)]

Iset_task_comm(“new”) I Privileged function call },

Traverse ICFG for Permission Check Error Detection

Bad Path

ICFG

1. Traverse ICFG for user
reachable path,
starting from system call

2. Find a control flow path
with no permission check
in a backward search
manner

===»|ndirect Call
- Direct Call

' Permission Check Function

‘ Privileged Function 1
5

Implementation and Evaluation

Implementation

LLVM/Clang-6
Generate a single-file vmlinux.bc using wilvm

Evaluation

Linux-v4.18.5
defconfig(2.4M LoC)
allyesconfig(15.9MLoC)

16

Detection Capability — defconfig (2.4M LoC), PeX-KIRIN is Better

Number of Bugs Detected

25

20 21 21
15
ICFG generated by K-
10 Miner is not sound, so
it detects less bugs
o 6
0
PeX-KIRIN PeX-TYPE PeX-K-Miner

(Imprecise ICFG) (unsound ICFG)

17

Detection Capability — defconfig (2.4M LoC), PeX-KIRIN is Better

Number of Warnings

1400 1319
PeX-KIRIN ©0OPeX-TYPE 0OPeX-K-Miner

1200

1000
853

800
600

400 348
218 210

196 231
200 7 ’—‘ =
0

DAC CAP LSM

1. ICFG generated by KIRIN is more precise than type approach, so it generates less warnings
2. ICFG generated by K-Miner-SVF is unsound, so it generates less warnings

18

Conclusions

PeX: a static permission check analysis framework for Linux kernel
KIRIN: kernel call graph analysis
Permission check functions/Privileged functions and their mappings

Evaluated Linux kernel v4.18.5 and found 36 permission check bugs

19

Thank you !

20

