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Problem Setting: Stable Watermark?

DNN volatile by design; 

no normal form of learned function

No stability of representation or hyperparameters

* Image from pixabay.com
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Backdooring a DNN

• Introduced in recent works*

*Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 

"Badnets: Identifying vulnerabilities in the machine learning model supply chain."(2017)

Classified as

1
Classified as 

8

* Images taken from the article
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Desired Properties

1. Functionality-preserving: a model with a watermark is as accurate as a model 

without it.

2. Unremovability: an adversary is not able to remove a watermark, even if he 

knows about the existence and the algorithm.

3. Non-trivial Ownership: an adversary is not able to claim ownership of the 

model, even if he knows the watermarking algorithm.

4. Unforgeability: an adversary, even when possessing trigger set examples and 

their targets, is unable to convince a third party about ownership.
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Training data

Training Adapting Pre-Trained 

model

Training data

Training
From-Scratch

model



Watermarking Neural Networks

• We demonstrate our method on image classification

• CIFAR-10, CIFAR-100 and ImageNet

• ResNet with 18 layers, standard CNN

cat, 

dog, 

…, 

car

*Adapted from Stanford cs231n  course presentations.
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Proving Ownership

•Proving ownership gives WM away

•We use Zero-Knowledge Tools in order to verify our model

Trigger Set/Labels
Verification Key

Model

Zero-Knowledge +

Cut and Choose

Yes/No
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•Find more possible attacks

•Compare WM algorithms?

•Defend against “hidden” distributions?

Future Directions

* Image taken from Wikipedia
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Results - Non-trivial Ownership

•We randomly sampled images and randomly selected labels for them

We label the following image as ‘automobile’ in

CIFAR-10 setting



Results - Unremovability

Prec@1 Prec@5

Test Set

CIFAR10 -> STL10 81.9 -

CIFAR100 -> STL10 77.3 -

ImageNet -> ImageNet 66.62 87.22

ImageNet -> CIFAR10 90.53 99.77

Trigger Set

CIFAR10 -> STL10 72.0 -

CIFAR100 -> STL10 62.0 -

ImageNet -> ImageNet 100.0 100.0

ImageNet -> CIFAR10 24.0 52.0


