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Backdooring a DNN

® |Introduced in recent works™

Original image Single-Pixel Backdoor Pattern Backdoor

Classified as
8

Classified as

A

*Tianyu Gu, Brendan Dolan-Gauvitt, and Siddharth Garg.
"Badnets: Identifying vulnerabilities in the machine learning model supply chain."(2017)

* Images taken from the article
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Desired Properties

1.

Functionality-preserving: a model with a watermark is as accurate as a model

without It.

Jnremovability: an adversary is not able to remove a watermark, even it he
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Knows about the existence and the algorithm.

rivial Ownership: an adversary is not able to claim ownership of the
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ity: an adversary, even when possessing trigger set examples and

thelir targets, is unable to convince a third party about ownership.
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Watermarking Neural Networks

* We demonstrate our method on image classification
* CIFAR-10, CIFAR-100 and ImageNet
* ResNet with 18 layers, standard CNN

cat,

dog,

car

*Adapted from Stanford cs231n course presentations.
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results - Functionality Preserving

*\We maintain the same accuracy as the model with no watermark

* Trigger Set not classified correctly without embedding of WM

' Prec@1 | Prec@5

Test Set
No-WM 66.64 87.11
FROMSCRATCH 66.51 87.21
Trigger Set
No-WM 0.0 0.0

FROMSCRATCH 100.0 100.0

Model Test-set acc. | Trigger-set
acc.

CIFAR-10

NO-WM 93.42 7.0

FROMSCRATCH | 93.81 100.0

PRETRAINED 93.65 100.0
CIFAR-100

No-WM 74.01 1.0
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Results - Unremovabillity
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Proving Ownership

* Proving ownership gives WM away

*We use Zero-Knowledge Tools in order to verify our model

A

Zero-Knowledge + Verification Key

Trigger Set/Labels

Cut and Choose

> Yes/No
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Future Directions

*FINd more possible attacks
*Compare WM algorithms?

*Defend against “hidden” distributions?

* Image taken from Wikipedia



Summing up

®* Watermarks for DNNs In a black-
box way

® Show theoretical connection to
backdooring

Training data

Pr [f(.’L‘) + classify(]\h/_f}m)} <e€
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® EXxperimental validation

Trigger Set

ng [TL(.CL‘) + classify (M ,:.c)] <e€
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Results - Non-trivial Ownership

*\We randomly sampled images and randomly selected labels for them

We label the following image as ‘automobile’ in
CIFAR-10 setting




Results - Unremovabillity

Prec@1 Prec@5
Test Set

CIFAR10 -> STL10 81.9 -

CIFAR100 -> STL10 (7.3 -
ImageNet -> ImageNet 06.62 37.22
ImageNet -> CIFAR10 90.53 99.77

Trigger Set

CIFAR10 -> STL10 2.0 -

CIFAR100 -> STL10 62.0 -
ImageNet -> ImageNet 100.0 100.0

ImageNet -> CIFAR10 24.0 52.0



