Turning Your Weakness into a Strength: Watermarking Deep Neural Networks by Backdooring

Carsten Baum Benny Pinkas

Yossi Adi Joseph Keshet

Moustapha Cissé

INTERNET & CLOUD

INTERNET & CLOUD MEDICINE & BIOLOGY

INTERNET & CLOUD

MEDICINE & BIOLOGY

MEDIA & ENTERTAINMENT

INTERNET & CLOUD

MEDICINE & BIOLOGY

MEDIA & ENTERTAINMENT

SECURITY & DEFENCES

INTERNET & CLOUD

MEDICINE & BIOLOGY

MEDIA & ENTERTAINMENT

SECURITY & DEFENCES

AUTONOMOUS MACHINES

Bob

Bob

Our setting: Classification

Bob

Input

Our setting: Classification

Hidden

Hidden

Our setting: Classification

Problem Setting: Stable Watermark?

EXECUTED THE

BUYER

Problem Setting: Stable Watermark?

DNN volatile by design; no normal form of learned function

EXECUTED THE

Problem Setting: Stable Watermark?

DNN volatile by design; no normal form of learned function

No stability of representation or hyperparameters

EXECUTED THE

Training data

Training data

Training data

 $\Pr_{x \in D \setminus T} \left[f(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$

Training data

 $\Pr_{x \in D \setminus T} \left[f(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$

Training data

 $\Pr_{x \in D \setminus T} \left[f(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$

 $\Pr_{x \in T} \left[T_L(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$
Our Idea: Turning your weakness into a strength

Training data

 $\Pr_{x \in D \setminus T} \left[f(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$

Trigger Set

 $\Pr_{x \in T} \left| T_L(x) \neq \text{classify}(\hat{M}, x) \right| \le \epsilon$

Backdooring a DNN

Introduced in recent works*

Classified as 1

Original image

*Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. "Badnets: Identifying vulnerabilities in the machine learning model supply chain."(2017)

Single-Pixel Backdoor

Pattern Backdoor

Classified as 8

* Images taken from the article

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Rouhani et al. 2018: Embed strings into outputs of layers
- Zhang et al. 2018: Same technique, different choice of trigger set

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Rouhani et al. 2018: Embed strings into outputs of layers
- Zhang et al. 2018: Same technique, different choice of trigger set

- Uchida et al. 2017: Alter model parameters directly
- Merrer et al. 2017: Adversarial examples as watermark

- Rouhani et al. 2018: Embed strings into outputs of layers
- Zhang et al. 2018: Same technique, different choice of trigger set

1. <u>Functionality-preserving</u>: a model without it.

Functionality-preserving: a model with a watermark is as accurate as a model

- 1. without it.
- knows about the existence and the algorithm.

Functionality-preserving: a model with a watermark is as accurate as a model

2. <u>Unremovability:</u> an adversary is not able to remove a watermark, even if he

- 1. <u>Functionality-preserving</u>: a model with a watermark is as accurate as a model without it.
- Unremovability: an adversary is not able to remove a watermark, even if he knows about the existence and the algorithm.
- 3. <u>Non-trivial Ownership</u>: an adversary is not able to claim ownership of the model, even if he knows the watermarking algorithm.

- Functionality-preserving: a model with a watermark is as accurate as a model without it.
- <u>Unremovability</u>: an adversary is not able to remove a watermark, even if he knows about the existence and the algorithm.
- 3. <u>Non-trivial Ownership</u>: an adversary is not able to claim ownership of the model, even if he knows the watermarking algorithm.
- 4. <u>Unforgeability:</u> an adversary, even when possessing trigger set examples and their targets, is unable to convince a third party about ownership.

Training data

Training data

Training data

Training data

Watermarking Neural Networks

- We demonstrate our method on image classification
 - CIFAR-10, CIFAR-100 and ImageNet
 - ResNet with 18 layers, standard CNN

*Adapted from Stanford cs231n course presentations.

Results - Functionality Preserving

•We maintain the same accuracy as the model with no watermark • Trigger Set not classified correctly without embedding of WM

Results - Functionality Preserving

- •We maintain the same accuracy as the model with no watermark
- Trigger Set not classified correctly without embedding of WM

Test-set acc.	Trigger-se					
	acc.					
CIFAR-10						
93.42	7.0					
93.81	100.0					
93.65	100.0					
CIFAR-100						
74.01	1.0					
73.67	100.0					
73.62	100.0					
	Test-set acc. CIFAR-10 93.42 93.81 93.65 CIFAR-100 74.01 73.67 73.62					

he model with no watermark ithout embedding of WM

Results - Functionality Preserving

- •We maintain the same accuracy as the model with no watermark
- Trigger Set not classified correctly without embedding of WM

Model	Test-set acc.	Trigger-set				
		acc.			Prec@1	Prec@5
CIFAR-10			Test Set			
No-WM	93.42	7.0	_	No-WM	66.64	87.11
FROMSCRATCH	93.81	100.0	_	FROMSCRATCH	66.51	87.21
PreTrained	93.65	100.0	_	Trigger Set		
CIFAR-100		_	No-WM	0.0	0.0	
No-WM	74.01	1.0	_	FROMSCRATCH	100.0	100.0
FROMSCRATCH	73.67	100.0				
PreTrained	73.62	100.0	_			

he model with no watermark ithout embedding of WM

From Scratch(Test set)
Pre Trained(Test set)
From Scratch(Trigger set)
Pre Trained(Trigger set)

Proving Ownership

• Proving ownership gives WM away

•We use <u>Zero-Knowledge Tools</u> in order to verify our model

Proving Ownership

Proving ownership gives WM away

•We use <u>Zero-Knowledge Tools</u> in order to verify our model

Trigger Set/Labels

Proving Ownership

Verification Key

Model

Proving ownership gives WM away

•We use <u>Zero-Knowledge Tools</u> in order to verify our model

Trigger Set/Labels

Proving Ownership

Proving ownership gives WM away

•We use <u>Zero-Knowledge Tools</u> in order to verify our model

Trigger Set/Labels

Proving Ownership

•Find more possible attacks

•Find more possible attacks

•Compare WM algorithms?

* Image taken from Wikipedia

•Find more possible attacks

•Compare WM algorithms?

• Defend against "hidden" distributions?

* Image taken from Wikipedia

Summing up

Training data

$$\Pr_{x \in D \setminus T} \left[f(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$$

Trigger Set

 $\Pr_{x \in T} \left[T_L(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$

- Watermarks for DNNs in a blackbox way
- Show theoretical connection to backdooring
- Experimental validation

Trigger Set

 $\Pr_{x \in T} \left[T_L(x) \neq \text{classify}(\hat{M}, x) \right] \leq \epsilon$

Summing up

Watermarks for DNNs in a black-**IDENTIFICATIONS** backdooring

Experimental validation

Results - Non-trivial Ownership

•We randomly sampled images and randomly selected labels for them

Results - Non-trivial Ownership

•We randomly sampled images and randomly selected labels for them

We label the following image as 'automobile' in CIFAR-10 setting

Results - Unremovability

Т

CIFAR10 -> STL10 CIFAR100 -> STL10 ImageNet -> ImageNet ImageNet -> CIFAR10

CIFAR10 -> STL10 CIFAR100 -> STL10 ImageNet -> ImageNet ImageNet -> CIFAR10

Prec@1	Prec@5
Test Set	
81.9	_
77.3	_
66.62	87.22
90.53	99.77
rigger Set	
72.0	_
62.0	_
100.0	100.0
24.0	52.0