
Vetting
Single Sign-On SDK Implementations

via
Symbolic Reasoning

Ronghai Yang1,2, Wing Cheong Lau1, Jiongyi Chen1, Kehuan Zhang1

1The Chinese University of Hong Kong and 2Sangfor Technologies Inc.

Strong Adoption of Single Sign-On Services

• Janrain Report: 75% of users prefer SSO and 91% of them are

satisfied

• 405 out of Top-1000 web applications support SSO services [1]

• 1372 out of 4151 Android apps support SSO services [2]

[1] Yang, R., Li, G., Lau, W. C., Zhang, K., and Hu, P. Model-based security testing: An empirical study on OAuth2.0
implementations. In AsiaCCS (2016)
[2] Wang, H., Zhang, Y., Li, J., Liu, H., Yang, W., Li, B., and Gu, D. Vulnerability assessment of OAuth implementations in Android
applications. In ACSAC (2015)

Basic Interactions of Single Sign-On (SSO)

• Three Parties: the third-party application (Relying Party, RP), the

Identity Provider (IdP) and the client device

RP server User IdP serverWho are you?
Tell IMDb my identity

This is your identity proofThis is my identity proof

Welcome, Ronghai!

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

4

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state

https://www.facebook.com/dialog/oauth?
client_id=127059960673829&
response_type=code&
redirect_uri=https://secure.imdb.com/oauth/facebook&
scope=email,publish_stream,user_about_me&
state=13ce

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &
grant permissions

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &
grant permissions

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &

grant permissions

4). code + state5). Req1: code + state

https://secure.imdb.com/oauth/facebook?
code=AQD-nc...PqjeZC4HDFzR3RWjOp9b3M&
state=13ce#_=_

https://secure.imdb.com/oauth/facebook

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &

grant permissions

4). code + state5). Req1: code + state

6). code + redirect_uri + client_secret

https://graph.facebook.com/v2.3/oauth/access_token?
client_id=127059960673829&
redirect_uri=https://secure.imdb.com/oauth/facebook&
client_secret={client-secret} &
code=AQD-nc...PqjeZC4HDFzR3RWjOp9b3MoS4oA

https://graph.facebook.com/v2.3/oauth/access_token

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &

grant permissions

4). code + state5). Req1: code + state

6). code + redirect_uri + client_secret

{"token_type":"Bearer",
"expires_in":7104,
"access_token":"CAABzj3PSN8C6OELrcr44hSlITO6…”}

7). Access token

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). response_type=code
3) User authentication &

grant permissions

4). code + state5). Req1: code + state

6). code + redirect_uri + client_secret

7). Access token

8). API request for the user’s resource: access token

{
"id": "100008512695261",
"birthday": "02/01/1991",
"email": "alicesinglesignon\u0040gmail.com",
"first_name": "Alice",
"gender": "female",
"last_name": "Sso",
"name": "Alice Sso",

}

9). The user resource hosted by IdP

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &

grant permissions

4). code + state5). Req1: code + state

6). code + redirect_uri + client_secret

7). Access token

8). API request for the user’s resource: access token

9). The user resource hosted by IdP

10). Req2: User info request

Single Sign-On Protocol Flow

RP server User IdP server1). Req0: User visits App

2). Redirect_uri, state
3) User authentication &

grant permissions

4). code + state5). Req1: code + state

6). code + redirect_uri + client_secret

7). Access token

8). API request for the user’s resource: access token

9). The user resource hosted by IdP

10). Req2: User info request

11). User info

Complication of Single Sign-On

14

• Multi-party systems

• Multi-step operations

• SDKs are provided to help RP developers to

implement SSO services

SDK Usages

• SDKs are provided not only by IdPs but

often by 4th-party SDK providers (for

cross-IdP support of an application)

• If the SDK is not secure, any

application using the SDK will be

insecure!

SDK Names # of Downloads

Facebook SDK 602,297

Request-OAuthLib 4,785,778

OAuthLib 6,476,894

Sinaweibopy 28,019

OAuth2Lib Not found

Rauth 487,275

Python-weixin 1,404

BoxSDK 77,074

Renrenpy 10,387

Douban-client 30,601

*: The number is retrieved from PyPI statistics and is a
conservative estimate. The installed number for many IdPs
(e.g., Facebook, Wechat, Renren, Douban), may not be
included in the statistics.

Possible Attacks due to Vulnerabilities in SDKs

• Many attacks are due to the incorrect implementations of SDKs

o For example, the SDK does not check the existence of access token (profile vulnerability

[3,10])

RP server User IdP serverWho are you? Tell IMDb my identity

Access_Token + UIDUID

Welcome, Ronghai !

[3] Yang, R., Lau W.C., Breaking and fixing mobile app authentication with OAuth2.0-based protocols In ACNS (2017)
[10] Yang, R., Lau, W. C., and Liu, T. Signing into one billion mobile app accounts effortlessly with Oauth 2.0. In BlackHat Europe (2016)

Prior Work on SSO Security

• Formal analysis of SSO protocol standards, including model checking

[4,5,6] and cryptographic proof [7]

[4] Bai, G., Lei, J., Meng, G., Venkatraman, S. S., Saxena, P., Sun, J., Liu, Y., and Dong, J. S. AUTHSCAN: automatic extraction of

web authentication protocols from implementations. In NDSS (2013)

[5] D. Fett, R. Kusters, and G. Schmitz. An expressive model for the web infrastructure: Defining and application to the Brower

ID SSO system. In S&P (2014)

[6] Fett, D., Kusters, R., and Schmitz, G. A comprehensive formal security analysis of Oauth 2.0 In CCS (2016)

[7] Chari, S., Jutla, C. S., and Roy, A. Universally composable security analysis of Oauth v2.0

Prior Work on SSO Security (cont’d)
• Real-world vulnerability discovery using network traffic analysis [8,9,10] or

Model-based automated testing [11,12]

• Discovery of hidden assumptions required for the proper use of SDK [13]

[8] Wang, R., Chen, S., and Wang, X., Signing Me into your Accounts through Facebook and Google: a Traffic-Guided Security Study on

Commercially Deployed Single-Sign-On Web Services, IEEE S&P (2012)

[9] Wang, H., Zhang, Y., Li, J., Liu, H., Yang, W., Li, B., and Gu, D. Vulnerability assessment of OAuth implementations in Android applications.

ACSAC (2015)

[10] Yang, R., Lau, W. C., and Liu, T. Signing into one billion mobile app accounts effortlessly with Oauth 2.0., BlackHat Europe (2016)

[11] Ferry, E., O’Raw, J., and Curran, K. Security evaluation of the Oauth 2.0 framework, Inf. & Comput. Security (2015)

[12] Yang, R., Li, G., Lau, W. C., Zhang, K., Hu, P. Model-based security testing: An empirical study on OAuth2.0 implementations, AsiaCCS (2016)

[13] Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., and Gurevich, Y. Explicating SDKs: Uncovering assumptions underlying secure

authentication and authorization, USENIX Security (2013)

Prior Work on SSO Security (summary)

• Formal analysis of SSO protocol standards, including model checking [4,5,6]

and cryptographic proof [7]

• Real-world vulnerability discovery using network traffic analysis [8,9,10] or

model-based automated testing [11,12]

• Discovery of hidden assumptions required for the proper use of SDK [13]

• Little effort has been devoted to a systematic testing of implementation

flaws in SSO SDK internals

Goal & Scopes

• Is an SSO SDK vulnerable by itself ?

oWork properly under whatever inputs

from the attacker?

• Focus on logic vulnerabilities of the

RP server SDK internals

Threat Model

• The attacker can lure the victim to visit a malicious RP (mRP) server (to obtain a

valid access token of the victim’s IdP account, but binding only to the mRP)

• The attacker can setup an external machine and use his/her own account to

freely communicate with the client, the IdP server, and the RP server

• When HTTPS is NOT used, the attacker can eavesdrop victim’s communication

Roles of S3KVetter

• Single Sign-on SDK Vetter (S3KVetter)

o Interact with the RP server and the IdP server as if it is the client device

oCommunicate with the RP server on behalf of the attacker

RP server

udy
Open-source SDK

Under study

S3KVetter
Remote IdP

Server

Client device

Attacker

Overview

• Extract all the program paths from

the SDK (via concolic execution)

• Define the security properties (i.e.,

expected behaviors) for SSO SDKs

• Check whether the security

properties hold on every program

path (via theorem prover) Violations?

Security Property

Theorem Prover
Satisfiability Modulo Theories

Extract Paths in SDK

Technical Challenges

• Multiple-party communication and multi-lock-step operations

o Some nonce parameters (e.g. code, state) can only be used for once

o Some parameters are remotely generated and consumed by the remote server

• Extra effort required to create/manage inputs to properly feed SSO SDKs

Issues of Existing Approaches for performing
Symbolic Execution on Multi-party Systems

• Run the external functions (of SDK) concretely

oRemote IdP API imposes limit on API access rate

• Return a random value of the same return type of external functions

without execution, e.g., DART

o This causes false positives to the testing results

• Symbolically explore the external functions, e.g., KLEENet

oWe do not have access to the source code of the IdP server

S3KVetter System Architecture

Scheduling Request Orders

• Use a general and simple scheduling algorithm

• Interest in authentication property

oCompleted by the last request only

Coordinating Multi-party Communication

• S3KVetter simulates and modifies the

external world for the SDK

o S3KVetter generates a nonce parameter

internally, on behalf of IdP

o Use this nonce parameter, if it satisfies

the conditions of the path to be explored

o Locally solves the condition, if the nonce

parameters does not satisfy the condition

Example Symbolic Predicate Tree of SDK

Translate the Predicate Tree

• Represent the predicate tree with SMT-Lib v2.0

not (= Req0Flag 0) and (str.prefixof ”https”
Req1[uri]) and str.contains uri code and …

or not (= Req0Flag 0) and not
(str.prefixof ”https” Req1[uri]) and …

or …

Formulation of Desired Security Properties

• Key observation: An RP server should login the user if and only if the

exact user has actually authorized this specific RP

Results Overview

• Discover 7 types of vulnerabilities on

10 popular SDKs

o Four types are previously unknown

• Consequences:

o Hijack user’s account in the RP, e.g. due to

Access Token injection

o Sniff user’s activities in the RP due to Use-

before-Assignment of state

Violations?

Security Property

Theorem Prover
Satisfiability Modulo Theories

Extract Paths in SDK

Statistics of SDK under Study

• Compared to the Baseline, S3KVetter can achieve 2%-13% higher statement coverage

and 2%-19% higher branch coverage for the SSO SDKs under test

• Discover 8 additional vulnerabilities in ten SSO SDKs

Summary of Discovered Vulnerabilities

• Use-before-Assignment of “State” variable => Allow sniffing of Victim activities via CSRF attacks

• Bypass MAC key, Refresh Token injection and Access Token Injection => Attacker can hijack Victim’s RP account.

These vulnerabilities have been fixed after we informed the developers of the corresponding SDKs.

Example Vulnerability in OAuthLib: Access
Token Injection

• Root cause of access token injection

• An attacker can remotely inject any access token of her choice

https://RP.com?state=xxx&code=fake code
&access token=victim’s access token at mRP

Example Exploit for Access Token Injection

• Assume the attacker has Alice’s access

token

o Setup a malicious RP, and lure the victim to

login

o Inject victim’s access token into the RP server

• The RP can obtain victim user’s resource

hosted in IdP

• The attacker can log into the RP as the

victim user

Conclusion

• Measurement study and new findings

o In-depth security analysis on ten popular SSO SDKs

o7 types of serious logic vulnerabilities, four are previously unknown

• Vulnerability detection for multi-party systems

o Symbolizing request orders & multi-party coordination

oOther usages: Payment system, etc.

Thank you!

Ronghai Yang1,2, Wing Cheong Lau1, Jiongyi Chen1 and Kehuan Zhang1

1The Chinese University of Hong Kong and 2Sangfor Technologies Inc.

