A Sense of Time for
JavaScript and Node.js

First-Class Timeouts as a Cure for
Event Handler Poisoning

James C. Davis
Eric R. Williamson
Dongyoon Lee

N7/~ | COMPUTER SCIENCE

Contributions

Attack: Event Handler Poisoning
Definition
Analysis

Detect + recover: First-Class Timeouts
Concept
Prototype

Engagement with the Node.js community
Guide

Core APIs: Documentation and repairs

Node.js: A JS framework for web services

TM+ developers (2017) 2x YoY
760K+ modules (Aug. 2018) 2x YoY
24B+ module downloads/month (July 2018) I2x YoY

<III=

nede
.=L
PE.;

Web server architectures

One Thread per Client Architecture (OTPCA)

R Dispatcher
=9A ~
% ‘
Reqp
)
‘ Resa
——

Thread pool (1000s of threads)

Event-Driven Architecture (EDA)

Reqa
—

Reqg
‘ —>

‘—

ResB

Resp

Event Q

Event loop

(single-threaded)

Worker pool
(k threads)

® Clients multiplexed; shared threads reduce threading overhead

® Cooperative multitasking via (1) Partitioning and (2) Offloading

* Example: n dc

Server architecture dictates programming style

OTPCA

Preemptive multi-tasking
Synchronous

def serveFile(req):
cont =
readFile(req.file)
z = zip(cont)
e = encrypt(z)

return e

EDA

Cooperative multi-tasking
Asynchronous

def serveFile(req):
cont = await

readFile(req.file)

z = awalt zip(cont)

e = awalit encrypt(z)

return e

Event Handler Poisoning Attacks
(EHP)

The EDA gains efficiency, loses isolation

Architecture Threads # Threads Multi-tasking
OTPCA Dedicated Thousands Preemptive
EDA Shared Tens Cooperative

Event Handlers = limited resource
Exhaust resource 2 DoS

Behavior during EHP attack on the Event Loop

Q Event loop Worker pool

x (single-threaded) (k threads)
Rqu
=== | Event Q
e [BE— [Task Q
s —
E Done Q
* Event loop is poisoned Q 4
* Throughput drops to zero x On the worker pool:

k malicious requests

-10 -

Vulnerable server

ReDoS

J Super-linear regex
def serveFile(name):
if name.match(/(\/.+)+S/):
lreadFile (name)]
. then(

)
10-DoS

Arbitrary file read

-11 -

ReDoS-based EHP attack

3000 Inject malicious input during steady-state
! A .
A o —A& Baseline REDOS
—~ 2500 A i
O rFy A\ ‘AA A
0 Y & AS --&-NodeCure REDOS
22000 A3 A | A
D : : :
= ii M '-.
& 1500 2 mwﬁ, ks ; |
(a R ok
& X
20 1000 A ;
8 2|
= 500 LT
. | TimeoutException delivered
0 hmww
0 | 2 3 4 5 6

Time (seconds)

-12-

Cross-Site Scripting (CWE 79)
Man in the Middle (CWE 300)
Denial of Service (CWE 400)
Command Injection (CWE 77)
Malicious Package (CWE 506)
Information Exposure (CWE 201)

Improper Authentication (CWE...
Other (CWEs 330, 208, 601, 90, ...) N

I
B EHP
Not EHP
115 ReDoS

0

I
50

35% of NPM vulnerabilities enable EHP
266 IO-DoS\
Directory Traversal (CWE 22) H

100 150 200 250

300

-13 -

What should we do about EHP?

-14 -

Naive |: Restart the server

Idea
® Heartbeat on each Event Handler

® [f any heartbeats fail, restart the server

Problems
® Every connected client gets DoS’d

® Repeat attacks

-15 -

Naive 2: Prevent through partitioning

def sum(L): Short L
s =0
for n in L:

s += n kd

return s

async def sum(L):
s =0
until done: Yield! —
s += <10 numbers> Yield!
yield
return s

+|
EdEdEd

Long L

Long L

-16 -

Partitioning is partial and ad hoc

Only protects code under the application dev.’s control
Not modules
Not framework
Not language

Good for algorithms — but how to meaningfully partition I/O?

Ongoing maintenance burden

-17 -

Our proposed solution:

First-Class Timeouts

-18 -

First-Class Timeouts

Analogy
Buffer overflow > Out of bounds exception
EDA “time overflow” = Timeout exception
Idea

Time-aware cooperative multi-tasking
® Bound the synchronous time of every Callback and Task
® Deliver a TimeoutException if this bound is exceeded

Analysis
® Soundly defeats EHP attacks
¢ Straightforward refactoring: try-catch in Promise chains

* Non-destructive: Existing clients unharmed

-19 -

Node.cure
Design and Evaluation

-20 -

Desired behavior

Event Handler Old behavior New behavior

Throw

Event Loo Unbounded execution . :
P TimeoutException

" Retu rn
Worker Pool . :
TimeoutException

21 -

Adding first-class timeouts to Node.js

Applllcatlon Node.js libs
V8| JS Engine = JS
I
/ C++ H Event-in
Time-aware JS ! i
TimeoutException Event loop

Interrupt handler

Time-aware Event Loop

Timeout Watchdog
Monitor CB entry/exit

Set T.E. interrupt

libuv

Worker pool

B

Time-aware Worker Pool
Managers watch for timeouts
Disposable Workers 22

Node.cure prototype

®* Built on Node.js v8.8.1 (LTS)
® 4 KLoC across 50 files

* Compatible
® Passes Node.js core test suite™

e Available on

-23-

Security guarantees

® Every vulnerable Language and Framework API is safe

® Applications built with these APIs are safe, too!

® Passes our EHP test suite
® All vulnerable Node.js APIs

® Including all used in the npm vulnerabilities

However

®* Detect: Must choose timeout thresholds (Goldilocks problem)
®* Respond: Tight threshold or blacklisting

-24 -

Performance penalty

Micro-benchmarks Macro-benchmarks (summary)
New interrupt 0% SE Ve v
Utility 0-8 %
Instr. CBs 1.01-2.4 x

Middleware 6-24 %

|/O buffers .3 %

-25-

Community Engagement

-26 -

Guide on nodejs.org

Reviews Node.js architecture
EHP attacks + examples

Advice about npm module safety

nede

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Docs Don't Block the Event Loop (or the Worker Pool)

ES6 and beyond

v8.11.3 APl Should you read this guide?

v10.8.0 API

Guides If you're writing anything more complicated than a brief command-line script, reading this

should help you write higher-performance, more-secure applications.

This document is written with Node servers in mind, but the concepts apply to complex
Node applications as well. Where OS-specific details vary, this document is Linux-centric.

TL; DR

Node.js runs JavaScript code in the Event Loop (initialization and callbacks), and offers a
Worker Pool to handle expensive tasks like file |/0. Node scales well, sometimes better than

-27 -

Changes to Node.js core

Documentation

readFile

randomBytes

randomFill

spawn

Code

-28-

Closing Remarks

-29 -

The EDA has an EHP problem.

First-class timeouts can cure it.

We:
* Defined an attack
* Demonstrated its presence in the wild

®* Designed and prototyped a defense
®* Disseminated to the practitioner community

Thank you for your attention!

\/a

COMPUTER SCIENCE

VIRGINIA TECH

Bonus Material

-31 -

Choosing a timeout

® The tighter the timeout, the less effective the EHP attack

® | oose timeouts = blacklist attackers

® No DDoS (threat model)

® Blacklisting is relatively easy with First-Class Timeouts because the
TimeoutException is deliveredin the context of the malicious

request

-32-

Programming with First-Class Timeouts

® Choose timeout — minimize CB variance during tuning
® Goldilocks problem

®* Add error handling — a global exception handler and per-request
handlers

®* New first-class asynchronous primitives like async/await and
Promises make this possible

®* We only support global timeouts but could refine thresholds on
a per-CB and per-Task basis

-33-

Various ideas towards EHP-safety

* Heartbeat Within the EDA

® Partitioning — paradigm

® First-class timeouts

* Larger worker pool Dedicating resources to

®* Preemptible callbacks and tasks each client: OTPCA
—

® Speculative concurrent execution

® Serverless

-34 -

Threat model

® Attacker can trigger worst-case behavior
* No DDoS

Thus:
® Include EHP, a problem unique to EDA

® Exclude DDoS, a general problem for problem web servers

-35-

More details on time-aware Event Handlers

Event Loop Worker Pool
o uv_queue_work
Priority Executor Executors
< . 1 UV_queue_work _prio CI000]
; Dangling Worke
Hangmy
Manager y
Always has a Worker

Worker
Disposable

-36 -

Implementation details

Layer

Language

Framework

Application

Changes

Add TimeoutException
Add interrupt

Timeout Watchdog
Handle T.E. from async APIs

Offload sync.APls
Time-aware C++ add-ons

Handle T.E.

-37-

C++ add-ons

®* Node.js applications can contain:
® Pure JavaScript
® C++ add-ons
— e.g. for performance or using systems libraries
® Application-defined C++ add-ons are unprotected by F.C.T

®* Must be made time-aware, similar to how we made Node.js’s own
C++ bindings time-aware

® Only 0.7% of npm modules have C++ add-ons

-38-

Experimental slides

-39-

Node.js attack — with ReDoS and |O-DoS

3000 . -& Baseline REDOS

2500 " 'H ,: —-®- Baseline ReadDOS
o2t ‘:.’Q" N 423 ~%'NodeCure REDOS

2000 %2 k k-x\ g‘ » ~*"NodeCure ReadDOS

eofie 299%000s
Mmmwmx&gnxl

Throughput (reg/sec)

I
&
A} \
1000 ¥ ~
A \
\ \
500 ' ‘
| \
0 Akdd kd A kAd &d A A A 4d 4 4000000000000 00000

0 | 2 3 4 5 6
Time (seconds)

-40 -

— One-thread-per-client architecture (OTPCA)

Handle request

Handle request

Dispatcher

Thread pool

-41 -

nede

Event-driven architecture (EDA)

Event Loop
Worker Pool

Pending events

offloads

returns
completed work

-42 -

Long-running request in OTPCA

Handle reque.st_-
1S

Handle request

Dispatcher

Thread pool

-43 -

nede Long-running request in EDA

Event Loop
Worker Pool

Pending events \
offloads
re]\/
completed work

mE = XD

-44 -

