
COMPUTER SCIENCE
- 1 -

James C. Davis
Eric R. Williamson

Dongyoon Lee

A Sense of Time for
JavaScript and Node.js

First-Class Timeouts as a Cure for
Event Handler Poisoning

- 2 -

Attack: Event Handler Poisoning
Definition
Analysis

Detect + recover: First-Class Timeouts
Concept
Prototype

Engagement with the Node.js community
Guide
Core APIs: Documentation and repairs

Contributions

- 3 -

7M+ developers (2017) 2x YoY
760K+ modules (Aug. 2018) 2x YoY
24B+ module downloads/month (July 2018) 12x YoY

Node.js: A JS framework for web services

- 4 -

Web server architectures

- 5 -

One Thread per Client Architecture (OTPCA)

• Each client gets its own worker thread
• Multithreading enables scalability
• Example:

ClientA

ResA

ResB

Thread pool (1000s of threads)

ReqA

ReqB

Dispatcher

…
ClientB

- 6 -

Event-Driven Architecture (EDA)

• Clients multiplexed; shared threads reduce threading overhead
• Cooperative multitasking via (1) Partitioning and (2) Offloading
• Example:

… CBA1

CBB1

CBA3
ResA

ResB Task
B1

…
…

Event loop
(single-threaded)

Worker pool
(k threads)

Task Q
Event Q

Done Q

ReqB

ReqA

- 7 -

OTPCA

def serveFile(req):
cont =
readFile(req.file)

z = zip(cont)
e = encrypt(z)
return e

EDA

def serveFile(req):
cont = await
readFile(req.file)

z = await zip(cont)
e = await encrypt(z)
return e

Server architecture dictates programming style

Preemptive	multi-tasking
Synchronous

Cooperative	multi-tasking
Asynchronous

- 8 -

Event Handler Poisoning Attacks
(EHP)

- 9 -

The EDA gains efficiency, loses isolation

Architecture Threads # Threads Multi-tasking
OTPCA Dedicated Thousands Preemptive

EDA Shared Tens Cooperative

Event	Handlers	=	limited	resource
Exhaust	resource	à DoS

- 10 -

Behavior during EHP attack on the Event Loop

• Event loop is poisoned
• Throughput drops to zero

…

…
…

Event loop
(single-threaded)

Worker pool
(k threads)

Task Q
Event Q

Done Q

ReqA

ReqB CBA1

On the worker pool:
k malicious requests

- 11 -

Vulnerable server

def serveFile(name):
if name.match(/(\/.+)+$/):
readFile(name)
.then(

...
)

ReDoS

IO-DoS
Arbitrary	file	read

Super-linear	regex

- 12 -

ReDoS-based EHP attack

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (

re
qs

/s
ec

)

Time (seconds)

Baseline REDOS

NodeCure REDOS

Inject malicious input during steady-state

TimeoutException delivered

- 13 -

0 50 100 150 200 250 300

Other	(CWEs	330,	208,	601,	90,	…)

Improper	Authentication	(CWE	…

Information	Exposure	(CWE	201)

Malicious	Package	(CWE	506)

Command	Injection	(CWE	77)

Denial	of	Service	(CWE	400)

Man	in	the	Middle	(CWE	300)

Cross-Site	Scripting	(CWE	79)

Directory	Traversal	(CWE	22)

EHP
Not	EHP

35% of NPM vulnerabilities enable EHP

115 ReDoS

266 IO-DoS

- 14 -

What should we do about EHP?

- 15 -

Idea
• Heartbeat on each Event Handler
• If any heartbeats fail, restart the server

Problems
• Every connected client gets DoS’d
• Repeat attacks

Naïve 1: Restart the server

- 16 -

Naïve 2: Prevent through partitioning

def sum(L):
s = 0
for n in L:

s += n
return s

async def sum(L):
s = 0
until done:

s += <10 numbers>
yield

return s

=

Short L

Long L

Long L

+
Yield!
Yield!

- 17 -

Only protects code under the application dev.’s control
Not modules
Not framework
Not language

Good for algorithms – but how to meaningfully partition I/O?

Ongoing maintenance burden

Partitioning is partial and ad hoc

- 18 -

Our proposed solution:

First-Class Timeouts

- 19 -

Analogy
Buffer overflow à Out of bounds exception
EDA “time overflow” à Timeout exception

Idea
Time-aware cooperative multi-tasking

• Bound the synchronous time of every Callback and Task
• Deliver a TimeoutException if this bound is exceeded

Analysis
• Soundly defeats EHP attacks
• Straightforward refactoring: try-catch in Promise chains
• Non-destructive: Existing clients unharmed

First-Class Timeouts

- 20 -

Node.cure
Design and Evaluation

- 21 -

Desired behavior

Event Handler Old behavior New behavior

Event Loop Unbounded execution Throw
TimeoutException

Worker Pool '' Return
TimeoutException

- 22 -

Adding first-class timeouts to Node.js

Application

JS Engine

C++

JS

Event-ing

Node.js libs

libuv

Worker poolEvent loop

V8

Time-aware JS
TimeoutException
Interrupt handler

Time-aware	Event	Loop
Timeout	Watchdog
Monitor	CB	entry/exit
Set	T.E.	interrupt

Time-aware	Worker	Pool
Managers	watch	for	timeouts
Disposable	Workers

- 23 -

• Built on Node.js v8.8.1 (LTS)
• 4 KLoC across 50 files

• Compatible
• Passes Node.js core test suite*

• Available on GitHub

Node.cure prototype

- 24 -

Security guarantees

• Every vulnerable Language and Framework API is safe
• Applications built with these APIs are safe, too!

• Passes our EHP test suite
• All vulnerable Node.js APIs
• Including all used in the npm vulnerabilities

However
• Detect: Must choose timeout thresholds (Goldilocks problem)
• Respond: Tight threshold or blacklisting

- 25 -

Micro-benchmarks Macro-benchmarks (summary)

Performance penalty

App. type Overhead

Server 0-2 %

Utility 0-8 %

Middleware 6-24 %

Component Overhead

New interrupt 0%

Instr. CBs 1.01-2.4 x

I/O buffers 1.3 x

- 26 -

Community Engagement

- 27 -

Don’t Block the Event Loop (or the Worker Pool)
Reviews Node.js architecture
EHP attacks + examples
Advice about npm module safety

Guide on nodejs.org

- 28 -

Documentation
fs

readFile

crypto
randomBytes
randomFill

child_process
spawn

Code
fs.readFile

Changes to Node.js core

- 29 -

Closing Remarks

- 30 -

The EDA has an EHP problem.

First-class timeouts can cure it.

We:
• Defined an attack
• Demonstrated its presence in the wild
• Designed and prototyped a defense
• Disseminated to the practitioner community

Thank you for your attention!

COMPUTER SCIENCE

- 31 -

Bonus Material

- 32 -

• The tighter the timeout, the less effective the EHP attack
• Loose timeouts à blacklist attackers
• No DDoS (threat model)
• Blacklisting is relatively easy with First-Class Timeouts because the
TimeoutException is delivered in the context of the malicious
request

Choosing a timeout

- 33 -

• Choose timeout – minimize CB variance during tuning
• Goldilocks problem

• Add error handling – a global exception handler and per-request
handlers

• New first-class asynchronous primitives like async/await and
Promises make this possible

• We only support global timeouts but could refine thresholds on
a per-CB and per-Task basis

Programming with First-Class Timeouts

- 34 -

• Heartbeat
• Partitioning
• First-class timeouts

• Larger worker pool
• Preemptible callbacks and tasks
• Speculative concurrent execution
• Serverless

Various ideas towards EHP-safety

Dedicating resources to
each client: OTPCA

Within the EDA
paradigm

- 35 -

• Attacker can trigger worst-case behavior
• No DDoS

Thus:
• Include EHP, a problem unique to EDA
• Exclude DDoS, a general problem for problem web servers

Threat model

- 36 -

More details on time-aware Event Handlers

Event Loop Worker Pool
Executors

Manager
Always has a Worker

Worker
Disposable

…
Priority Executor

uv_queue_work

uv_queue_work_prio

Hangman

Dangling Worker

- 37 -

Implementation details

Layer Changes

Language • Add TimeoutException
• Add interrupt

Framework

• Timeout Watchdog
• Handle T.E. from async APIs
• Offload sync. APIs
• Time-aware C++ add-ons

Application • Handle T.E.

- 38 -

• Node.js applications can contain:
• Pure JavaScript
• C++ add-ons

− e.g. for performance or using systems libraries

• Application-defined C++ add-ons are unprotected by F.C.T
• Must be made time-aware, similar to how we made Node.js’s own

C++ bindings time-aware
• Only 0.7% of npm modules have C++ add-ons

C++ add-ons

- 39 -

Experimental slides

- 40 -

Node.js attack – with ReDoS and IO-DoS

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6

T
hr

ou
gh

pu
t

(r
eq

/s
ec

)

Time (seconds)

Baseline REDOS
Baseline ReadDOS
NodeCure REDOS
NodeCure ReadDOS

- 41 -

Dispatcher

Handle request

Handle request

Thread pool

One-thread-per-client architecture (OTPCA)

- 42 -

Event-driven architecture (EDA)

Event Loop
Worker Pool

offloads

returns
completed work

Pending events

- 43 -

Long-running request in OTPCA

Dispatcher

Handle request

Handle request

Thread pool
☠�

- 44 -

Long-running request in EDA

offloads

returns
completed work

Pending events
Worker Pool

Event Loop

