HeapHopper

Bringing Bounded Model Checking to Heap Implementation
Security

Moritz Eckert* , Antonio Bianchi*f, Ruoyu Wang*®,
Yan Shoshitaishvili®, Christopher Kruegel*, and Giovanni Vigna*

*University of California, Santa Barbara
°Arizona State University
TThe University of lowa

Poison NULL Byte Attack

uX100 Ll K100 e Complex attacking-technique discovered by Chris
1 A B C
: Evans
,_>B.size=0x208 |——C.prev_51ze=0x210
‘. L o1, £ e Only needs an overflow of a single NULL byte
8 sizemox200 ~C.prev_size=0x210 _
s A i c e Leverages that to a full overlapping chunk
0x100 ERRONEOUS C.prev_size=0x210 .
[> C~P”V—Sm“ y "°Tc”*’°“f°’ o Attacker gains full control over chunk and
e metadata
5 A B1 B2 c . . .
e A patch was introduced by Chris Evans himself:
. T
............. —
’I— “Did we finally nail off-by-one NULL byte overwrites

in the glibc heap? Only time will tell!”

Poison NULL Byte Attack

The answer is No.

After the usual long proposal phase the
patch was considered being “good” and
finally merged

Within days someone found a bypass

Motivation

e Manually managing dynamic memory is hard — Bugs are common
e Metadata corruption is a valuable target for attackers

e Checks are introduced in a nonsystematic way

HeapHopper

Configuration
- Actions
- Depth
- Exploitation primitives

Heap (1ibc)
Implementation g
(shared object file) \'*“:;:f

\,’(.\\'.'.

PoC Exploits
Source Code

c1=malloc(0x100)
free(c1)
read(0,c1,0x20)

/

HeapHopper

\

y

Lists of
Transactions

Path Generation

Exploitation Attempts

Source Code

UAF

c1=malloc(s1)

Compiled
Exploitation
Attempts

100
o(?

p

B

Y

Symbolic Execution

free(c1)
read(0,c1,s2)

Heap
Functions
Hooking

angr
(symbolic execution engine)

l

Security
Properties
Violation
Detector

Symbolic Execution
Traces with
Constraints

\

p

Symbolic
Memory

Handlers

PoC Generation

Symbolic
Values
Concretization

I

PoC Generator

i

Symbolic
Pointers
Concretization

N

Heap Interaction Models

Heap Interaction Models

HeapHopper

Y

\

Path Generation

Lists of Exploitation Attempts

Transactions Source Code
II lI
M cl1=malloc(s1)
F free(c1) —
UAF read(0,c1,s2)

Model

Heap-state

Mapped memory
Allocated chunks
Freed chunks

/Transactions
Malloc
Free
Overflow

o Y,

New Heap-state

Mapped memory
Allocated chunks
Freed chunks

Model

/Transactions

Malloc
Free
Overflow

.

/

Transactions

e Currently supported transactions

o Usages
m Malloc
m Free

o Miss-Usages
m Overflow
m Use-After-Free (UAF)
m Double Free

m Fake Free

10

Allocated chunk with
symbolic attributes

Malloc (|\/|) e T ader: »

Metadata Size:y

Size parameter

““é a e o o
o) if size < 500:
e
“%
“‘m ..
‘ Heap state

11

U Se'Afte - F Free (U A F) Potential metadata overwritten

with symbolic bytes

Freed chunk Addr: x

Size:y

...

12

Interaction Models

Transactions

Permutation

A A

Source Code

N N N

Binary

All permutations of Transactions bounded by a
maximum depth

Filtered with a set of rules

o Consider semantics

o Existence of at least one malicious transactions
Transform to source code
o Placeholders for the symbolic memory

Compiled to binaries

13

Model Checking

Model Checking

Compiled
Exploitation
Attempts

100
o(?

—_—

Y Y

a . .
Symbolic Execution
| angr l
(symbolic execution engine)

Heap Security
Functions | «—(— | Properties
Hooking 4 Violation

Detector
Symbolic
Memory
Handlers
A

15

Symbolic Execution

angr

Executing the library code
Emulating system calls such as mmap, brk

Using Depth First Search

16

|dentifying Security Violations

e Checking for one of the following states

o Overlapping Allocation (OA)
o Non-Heap Allocation (NHA)
o Arbitrary Write (AW) / Arbitrary Write Constraint (AWC)
m Memory write issued in allocator code with a symbolic address as the destination

m Representing a attacker controlled write

17

PoC Generation

PoC Generation

PoC Exploits 1

Source Code c1=malloc(0x100)
free(c1)
read(0,c1,0x20)

/

Symbolic Execution

Traces with 7
Constraints PoC Generation

Symbolic
Values
Concretization

:

\4

PoC Generator

i

Symbolic
Pointers
Concretization

\

19

PoC Generation

int main (void) {
// Allocation
ctrl data 0.global var = malloc(0x80) ;e
ctrl data 0O.global var[0]
ctrl data 0O.global var[1l] &write target;
ctrl data 0O.global var([2] = 0x0;
ctrl data O0.global var[3] = 0xO0;

= &write target;

// VULN: Overflow

offset = mem2chunk offset;

(ctrl data 1l.global var-offset) [0] = 0x90;
(ctrl data 1l.global var-offset+0x8) [0] = 0x90;

write target[0] = 0xO0;
write target[l] = 0xO0;
write target[2] = ctrl data 0O.global var + 8;
write target[3] = ctrl data 0O.global var + O;

free(ctrl data 1l.global var);

20

HeapHopper

Configuration
- Actions
- Depth
- Exploitation primitives

Heap (1ibc)
Implementation g
(shared object file) \'*“:;:f

\,’(.\\'.'.

PoC Exploits
Source Code

c1=malloc(0x100)
free(c1)
read(0,c1,0x20)

/

HeapHopper

\

y

Lists of
Transactions

Path Generation

Exploitation Attempts

Source Code

UAF

c1=malloc(s1)

Compiled
Exploitation
Attempts

100
o(?

p

B

Y

Symbolic Execution

free(c1)
read(0,c1,s2)

Heap
Functions
Hooking

angr
(symbolic execution engine)

l

Security
Properties
Violation
Detector

Symbolic Execution
Traces with
Constraints

\

p

Symbolic
Memory

Handlers

PoC Generation

Symbolic
Values
Concretization

I

PoC Generator

i

Symbolic
Pointers
Concretization

N

21

Limitations

e Bounded by depth when creating permutations
e Bounded by memory

e Bounded by time

22

Evaluation

23

Allocator Comparison

Allocator OA NHA AWC AW
dimalloc 2.7.2 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,0): M-M-O-F-M (M,F,0): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M
dimalloc 2.8.6 (M,F,0): M-M-M-F-O-M (M,F,0): M-M-M-F-O-O-F
(M,F,UAF): M-M-M-F-UAF-M-M
musl 1.1.9 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,UAF): M-M-F-UAF-M-M (M,F,FF): M-M-F-FF-M-M
ptmalloc 2.23 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M-F-FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,0): M-M-M-O-F-M (M,F,0): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M
ptmalloc 2.26 (M,F,0): M-M-O-F-M (M,FF): FF-M (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,UAF): M-M-F-UAF-M-M (M-F-FF): M-FF-F

Overflow (O), Free (F), Use-After-Free (UAF), Double Free (DF), Fake Free (FF)

Allocator Comparison

Allocator OA NHA AWC AW
dimalloc 2.7.2 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,0): M-M-O-F-M (M,F,0): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M
dimalloc 2.8.6 (M,F,0): M-M-M-F-O-M (M,F,0): M-M-M-F-O-O-F
(M,F,UAF): M-M-M-F-UAF-M-M
musl 1.1.9 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,UAF): M-M-F-UAF-M-M (M,F,FF): M-M-F-FF-M-M
ptmalloc 2.23 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M-F-FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,0): M-M-M-O-F-M (M,F,0): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M
ptmalloc 2.26 (M,F,0): M-M-O-F-M (M,FF): FF-M (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,UAF): M-M-F-UAF-M-M (M-F-FF): M-FF-F

Overflow (O), Free (F), Use-After-Free (UAF), Double Free (DF), Fake Free (FF)

Poison NULL Byte Attack

0x100 0x208 0x100
B.size=0x208 ~C .prev_size=0x210

1-byte-NUL overflow:

B.size=0x200 —~C. prev_size=0x210
0x100 ERRONEOUS C.prev_size=0x210
+«————— C.prev_siz [NOT UPDATED
0x80

Overlapping

Chunks
A [ol e |

With Chris Evans’s patch:
nextchunk(B) = B+B.size = B+0x200

To bypass the check, set T
4 toB.size & (~OxFF) (e
(during Step 1)

.size=l —_— . i
B.size=0x200 i differont: Abort nextchunk(B).prev_size

Challenging because of high
depth

Verified that HeapHopper finds
attack

Verified that HeapHopper finds
patch bypass

Developed a new patch and
verified that HeapHopper does
not find a bypass

We are trying to upstream this
patch

26

Questions?

https://github.com/angr/heaphopper

27

