
HeapHopper
Bringing Bounded Model Checking to Heap Implementation

Security
Moritz Eckert* , Antonio Bianchi*†, Ruoyu Wang*°,

Yan Shoshitaishvili°, Christopher Kruegel*, and Giovanni Vigna*

*University of California, Santa Barbara
°Arizona State University
†The University of Iowa

Poison NULL Byte Attack
● Complex attacking-technique discovered by Chris

Evans

● Only needs an overflow of a single NULL byte

● Leverages that to a full overlapping chunk

○ Attacker gains full control over chunk and

metadata

● A patch was introduced by Chris Evans himself:

“Did we finally nail off-by-one NULL byte overwrites

in the glibc heap? Only time will tell!”

2

Poison NULL Byte Attack
● The answer is No.

● After the usual long proposal phase the

patch was considered being “good” and

finally merged

● Within days someone found a bypass

3

Motivation
● Manually managing dynamic memory is hard → Bugs are common

● Metadata corruption is a valuable target for attackers

● Checks are introduced in a nonsystematic way

4

HeapHopper

5

Heap Interaction Models

6

Heap Interaction Models

7

Model

Heap-state

Mapped memory
Allocated chunks
Freed chunks
...

New Heap-state

Mapped memory
Allocated chunks
Freed chunks
...

8

Transactions

Malloc
Free
Overflow
...

Model
Transactions

Malloc
Free
Overflow
...

9

Transactions
● Currently supported transactions

○ Usages

■ Malloc

■ Free

○ Miss-Usages

■ Overflow

■ Use-After-Free (UAF)

■ Double Free

■ Fake Free

10

Malloc (M)

Symbolic value:
20 or 200 or 2000

Size parameter

malloc

Re
tu

rn
s

if size < 100:
...

if size < 500:
...

Constrains

Allocated chunk with
symbolic attributes

Addr: x
Size: yMetadata

Heap state

M
odifies

11

Use-After-Free (UAF)

UAF

Freed chunk

Addr: x
Size: yMetadata

Symbolic
data

Addr: x
Size: ySymbolic

Data

Potential metadata overwritten
with symbolic bytes

Heap state

Modifies

12

Interaction Models
● All permutations of Transactions bounded by a

maximum depth

● Filtered with a set of rules
○ Consider semantics

○ Existence of at least one malicious transactions

● Transform to source code
○ Placeholders for the symbolic memory

● Compiled to binaries

Transactions

Permutation

Source Code

Binary

13

Model Checking

14

Model Checking

15

Symbolic Execution

● Executing the library code

● Emulating system calls such as mmap, brk

● Using Depth First Search

angr

16

Identifying Security Violations
● Checking for one of the following states

○ Overlapping Allocation (OA)

○ Non-Heap Allocation (NHA)

○ Arbitrary Write (AW) / Arbitrary Write Constraint (AWC)

■ Memory write issued in allocator code with a symbolic address as the destination

■ Representing a attacker controlled write

17

PoC Generation

18

PoC Generation

19

PoC Generation
int main(void) {
 // Allocation
 ctrl_data_0.global_var = malloc(0x80);
 ctrl_data_0.global_var[0] = &write_target;
 ctrl_data_0.global_var[1] = &write_target;
 ctrl_data_0.global_var[2] = 0x0;
 ctrl_data_0.global_var[3] = 0x0;

...

 // VULN: Overflow
 offset = mem2chunk_offset;
 (ctrl_data_1.global_var-offset)[0] = 0x90;
 (ctrl_data_1.global_var-offset+0x8)[0] = 0x90;

 write_target[0] = 0x0;
 write_target[1] = 0x0;
 write_target[2] = ctrl_data_0.global_var + 8;
 write_target[3] = ctrl_data_0.global_var + 0;
 free(ctrl_data_1.global_var);
}

20

Symbolic
allocation sizes

Symbolic memory
content

Symbolic
overflow data

HeapHopper

21

Limitations

22

● Bounded by depth when creating permutations

● Bounded by memory

● Bounded by time

Evaluation

23

Allocator Comparison

24

Overflow (O), Free (F), Use-After-Free (UAF), Double Free (DF), Fake Free (FF)

Allocator OA NHA AWC AW

dlmalloc 2.7.2 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,O): M-M-O-F-M
(M,F,UAF): M-M-F-UAF-M-M

(M,F,FF): M-FF-F
(M,F,O): M-M-O-F
(M,F,UAF): M-M-F-UAF-M

dlmalloc 2.8.6 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,F,O): M-M-M-F-O-O-F

musl 1.1.9 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,UAF): M-M-F-UAF-M-M

(M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,FF): M-M-F-FF-M-M

ptmalloc 2.23 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,O): M-M-M-O-F-M
(M,F,UAF): M-M-F-UAF-M-M

(M-F-FF): M-FF-F
(M,F,O): M-M-O-F

(M,F,UAF): M-M-F-UAF-M

ptmalloc 2.26 (M,F,O): M–M-O-F-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,UAF): M-M-F-UAF-M-M

(M,F,UAF): M-M-F-UAF-M
(M-F-FF): M-FF-F

Allocator Comparison

25

Overflow (O), Free (F), Use-After-Free (UAF), Double Free (DF), Fake Free (FF)

Allocator OA NHA AWC AW

dlmalloc 2.7.2 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,O): M-M-O-F-M
(M,F,UAF): M-M-F-UAF-M-M

(M,F,FF): M-FF-F
(M,F,O): M-M-O-F
(M,F,UAF): M-M-F-UAF-M

dlmalloc 2.8.6 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,F,O): M-M-M-F-O-O-F

musl 1.1.9 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,UAF): M-M-F-UAF-M-M

(M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,FF): M-M-F-FF-M-M

ptmalloc 2.23 (M,F,O): M-M-M-F-O-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,O): M-M-M-O-F-M
(M,F,UAF): M-M-F-UAF-M-M

(M-F-FF): M-FF-F
(M,F,O): M-M-O-F

(M,F,UAF): M-M-F-UAF-M

ptmalloc 2.26 (M,F,O): M–M-O-F-M
(M,F,UAF): M-M-M-F-UAF-M-M

(M,FF): FF-M
(M,F,UAF): M-M-F-UAF-M-M

(M,F,UAF): M-M-F-UAF-M
(M-F-FF): M-FF-F

Poison NULL Byte Attack

● Challenging because of high
depth

● Verified that HeapHopper finds
attack

● Verified that HeapHopper finds
patch bypass

● Developed a new patch and
verified that HeapHopper does
not find a bypass

● We are trying to upstream this
patch

26

Questions?

27

https://github.com/angr/heaphopper

