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Poison NULL Byte Attack
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e A patch was introduced by Chris Evans himself:
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’I— “Did we finally nail off-by-one NULL byte overwrites

in the glibc heap? Only time will tell!”



Poison NULL Byte Attack

The answer is No.

After the usual long proposal phase the
patch was considered being “good” and
finally merged

Within days someone found a bypass



Motivation

e Manually managing dynamic memory is hard — Bugs are common
e Metadata corruption is a valuable target for attackers

e Checks are introduced in a nonsystematic way
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Heap Interaction Models



Heap Interaction Models
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Transactions

e Currently supported transactions

o Usages
m Malloc
m Free

o Miss-Usages
m  Overflow
m Use-After-Free (UAF)
m Double Free

m Fake Free
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Allocated chunk with
symbolic attributes
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U Se'Afte - F Free ( U A F ) Potential metadata overwritten

with symbolic bytes

Freed chunk Addr: x

Size:y
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12



Interaction Models

Transactions

Permutation

A A

Source Code

N N N

Binary

All permutations of Transactions bounded by a
maximum depth

Filtered with a set of rules

o Consider semantics

o Existence of at least one malicious transactions
Transform to source code
o Placeholders for the symbolic memory

Compiled to binaries
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Model Checking



Model Checking
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Symbolic Execution

angr

Executing the library code
Emulating system calls such as mmap, brk

Using Depth First Search

16



|dentifying Security Violations

e Checking for one of the following states

o  Overlapping Allocation (OA)
o Non-Heap Allocation (NHA)
o  Arbitrary Write (AW) / Arbitrary Write Constraint (AWC)
m  Memory write issued in allocator code with a symbolic address as the destination

m Representing a attacker controlled write
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PoC Generation
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PoC Generation

int main (void) {
// Allocation
ctrl data 0.global var = malloc( 0x80) ;e
ctrl data 0O.global var[0]
ctrl data 0O.global var[1l] &write target;
ctrl data 0O.global var([2] = 0x0;
ctrl data O0.global var[3] = 0xO0;

= &write target;

// VULN: Overflow

offset = mem2chunk offset;

(ctrl data 1l.global var-offset) [0] = 0x90;
(ctrl data 1l.global var-offset+0x8) [0] = 0x90;

write target[0] = 0xO0;
write target[l] = 0xO0;
write target[2] = ctrl data 0O.global var + 8;
write target[3] = ctrl data 0O.global var + O;

free(ctrl data 1l.global var);
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Limitations

e Bounded by depth when creating permutations
e Bounded by memory

e Bounded by time
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Evaluation
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Allocator Comparison

Allocator OA NHA AWC AW
dimalloc 2.7.2 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,0): M-M-O-F-M (M,F,0): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M
dimalloc 2.8.6 (M,F,0): M-M-M-F-O-M (M,F,0): M-M-M-F-O-O-F
(M,F,UAF): M-M-M-F-UAF-M-M
musl 1.1.9 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,UAF): M-M-F-UAF-M-M (M,F,FF): M-M-F-FF-M-M
ptmalloc 2.23 (M,F,0): M-M-M-F-O-M (M,FF): FF-M (M-F-FF): M-FF-F (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,0): M-M-M-O-F-M (M,F,0): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M
ptmalloc 2.26 (M,F,0): M-M-O-F-M (M,FF): FF-M (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M | (M,F,UAF): M-M-F-UAF-M-M (M-F-FF): M-FF-F

Overflow (O), Free (F), Use-After-Free (UAF), Double Free (DF), Fake Free (FF)
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Poison NULL Byte Attack

0x100 0x208 0x100
B.size=0x208 ~C .prev_size=0x210

1-byte-NUL overflow:

B.size=0x200 —~C. prev_size=0x210
0x100 ERRONEOUS C.prev_size=0x210
+«————— C.prev_siz [ NOT UPDATED
0x80

Overlapping

Chunks
A [ ol e |

With Chris Evans’s patch:
nextchunk(B) = B+B.size = B+0x200

To bypass the check, set T
4 toB.size & (~OxFF) (e
(during Step 1)

.size=l —_— . i
B.size=0x200 i differont: Abort nextchunk(B).prev_size

Challenging because of high
depth

Verified that HeapHopper finds
attack

Verified that HeapHopper finds
patch bypass

Developed a new patch and
verified that HeapHopper does
not find a bypass

We are trying to upstream this
patch

26



Questions?

https://github.com/angr/heaphopper
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