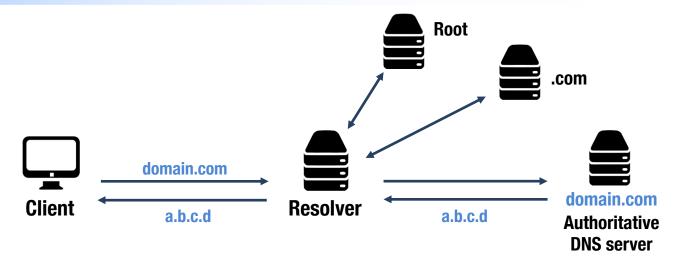
End-Users Get Maneuvered: Empirical Analysis of Redirection Hijacking in Content Delivery Networks

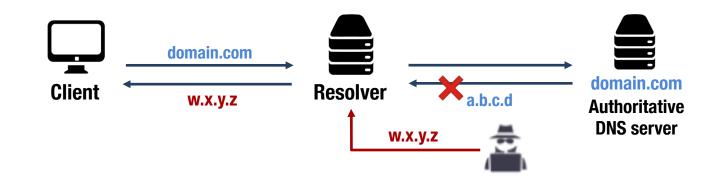
Shuai Hao* Yubao Zhang Haining Wang Angelos Starvous

University of Delaware University of Delaware University of Delaware George Mason University

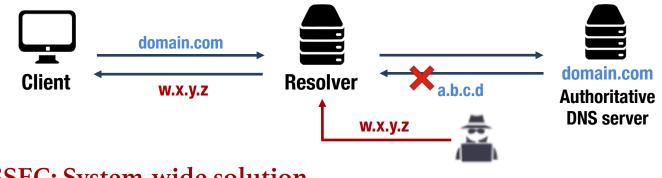
Currently with CAIDA / UC San Diego


- DNS and DNSSEC
- Redirection Hijacking in CDN
- Threat Analysis
- Countermeasures
- Conclusion

- DNS and DNSSEC
- Redirection Hijacking in CDN
- Threat Analysis
- Countermeasures
- Conclusion



Domain Name System


DNS Cache Poisoning/DNS Spoofing


DNS Cache Poisoning/DNS Spoofing

- Challenge-response defense
 - transaction-ID and source port randomization
 - increase the entropy: only effective against the **off-path** attackers

DNSSEC: System-wide solution

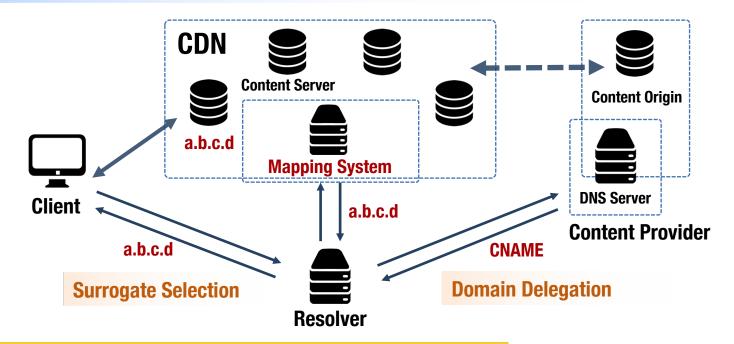
Negative Responses in DNSSEC .com • Denial of existence in DNSSEC Root **RRSIG DS Record** NX.domain.com NX.domain.com domain.com Resolver Client **NSEC / NSEC3 Authoritative DNS** server **DNSKEY ZSK DNSKEY KS RRSIG**

Negative Responses in DNSSEC

.com • Zone Enumeration Attack Root • enumerate the NSEC records to **RRSIG DS Record** walk through the zone space NX.domain.com NX.domain.com domain.com **Resolver** Client **NSEC / NSEC3 Authoritative DNS** server **DNSKEY ZSK** DNSKEY KS **RRSIG**

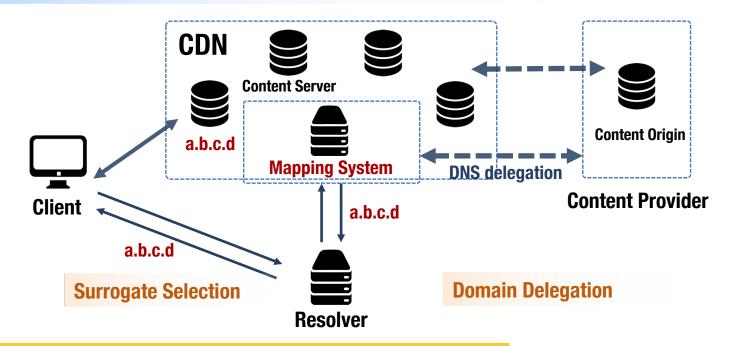
Negative Responses in DNSSEC

- Zone Enumeration Attack
 - expose private device names; reveal registrant data [RFC 5155]
- ECDSA-based (Live) Signing
 - RSA-based signing is prohibitively expensive to generate real-time, on-demand signature
 - fast key generation
 - live signing zone enumeration
 - significantly reduced signature size
 - DDoS amplification attack
 - has been adopted by Cloudflare and .nl TLD

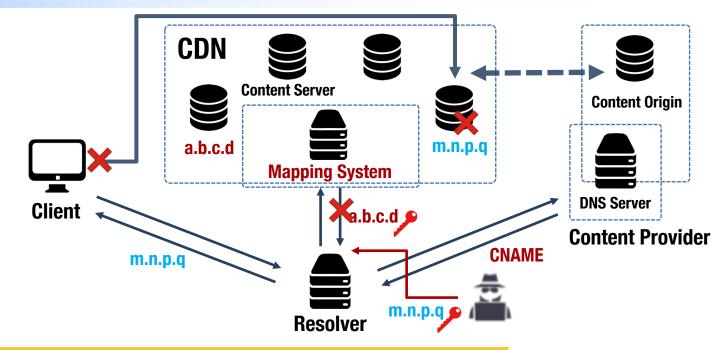


- DNS and DNSSEC
- Redirection Hijacking in CDN
- Threat Analysis
- Countermeasures
- Conclusion

/ Redirection Hijacking in CDN


Request Routing

/ Redirection Hijacking in CDN


Request Routing

/ Redirection Hijacking in CDN

Threat Model: When DNSSEC meets CDN

- DNS and DNSSEC
- Redirection Hijacking in CDN
- Threat Analysis
- Countermeasures
- Conclusion

Case Studies

• End-User Mapping: Akamai

www.dell.com	CNAME	www1.dell-cidr.akadns.net
www1.dell-cidr.akadns.net	CNAME	cdn-www.dell.com.edgekey.net
cdn-www.dell.com.edgekey.net	CNAME	cdn-www.dell.com. edgekey.net.globalredir.akadns.net
cdn-www.dell.com. edgekey.net.globalredir.akadns.net	CNAME	e28.x.akamaiedge.net
e28.x.akamaiedge.net	А	104.117.80.33 dynamic mapping

Case Studies

• Dynamic CNAME: KeyCDN

ja.onsen.io	CNAME	jaonsenio-4ecf.kxcdn.com
jaonsenio-4ecf.kxcdn.com	CNAME	p-usse00.kxcdn.com
p-uswd00.kxcdn.com	А	76.164.234.2

ja.onsen.io	CNAME	jaonsenio-4ecf.kxcdn.com
jaonsenio-4ecf.kxcdn.com	CNAME	p-uswd00.kxcdn.com
p-uswd00.kxcdn.com	А	107.182.231.101

CDN	Domain Delegation	Surragata Calastian	DNSSEC	Dynamics	
CDN	Domain Delegation	Surrogate Selection	A	CNAME	А
Akamai	CNAME Chain	DNS-based Mapping (ECS)	×		•
Cachefly	CNAME/NS Hosting	Anycast Routing	Feasible		
CDN.net	CNAME	DNS-based Mapping	×		•
CDN77	CNAME	DNS-based Mapping (ECS)	×		•
CDNetworks	CNAME	DNS-based Mapping (ECS)	×		•
CDNlion	CNAME	DNS-based Mapping	×		•
CDNsun	CNAME	DNS-based Mapping	×		•
ChinaCache	CNAME/CNAME Chain	DNS-based Mapping (ECS)	×		•
CloudFlare	CNAME/NS Hosting	Anycast Routing	\checkmark		
CloudFront (Amazon)	CNAME/NS Hosting	DNS-based Mapping (ECS)	×		•
EdgeCast (Verizon)	CNAME/CNAME Chain	Hybrid Type I	Feasible		\bigcirc
Fastly	CNAME	Hybrid Type II	×		•
Highwinds	CNAME	Anycast Routing	Feasible		
Incapsula	CNAME	Hybrid Type I	Feasible		\bigcirc
KeyCDN	CNAME Chain	DNS-based Mapping (ECS)	×	•	•
LeaseWeb	CNAME	DNS-based Mapping	×		•
Limelight	CNAME	DNS-based Mapping	×		•
MaxCDN/NetDNA	CNAME	Anycast Routing	Feasible		
Rackspace	CNAME Chain	DNS-based Mapping (ECS)	×		•
cedexis (MultiCDN)	CNAME Chain	N/A	×		

Why DNSSEC adoption is so slow?

 T. Chung et al., <u>Understanding the Role of Registrars in DNSSEC</u> <u>Deployment</u> (IMC'17)

"Registrars are responsible for the (small) DNSSEC deployment today, and that many leading registrars do not support DNSSEC at all, or require customers to take cumbersome steps to deploy DNSSEC"

- Why DNSSEC adoption for top domains is also slow?
 - their registrars are typically DNSSEC-enabled
 - highly reply on CDN to delivery contents: dynamic mapping

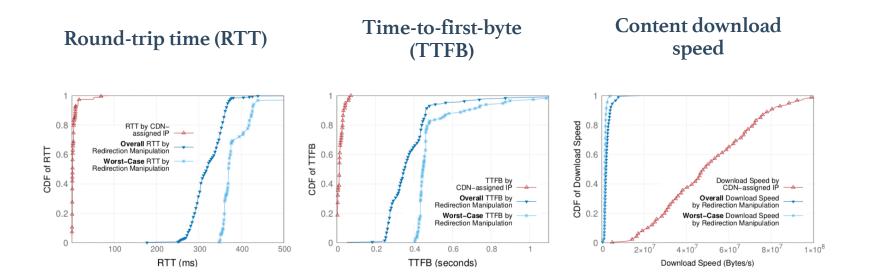
Performance Impact

Round-trip time (RTT)

• pure network matric: performance of network path

Time-to-first-byte (TTFB)

• network latency + page construction


Content download speed

 download a set of medium-sized content files (50k-50M)

curl -H Host:i.dell.com -O http://104.78.87.26/sites/imagecontent/products/...jpg

Performance Impact

More Serious Threat

Potential DoS attack

- directing the requests from a large number of clients to a single victim edge servers (with legitimate traffic)
- Defeating CDN's load balancing and DoS protection
 - easy detection for unresponsive edge servers
 - replaying legitimate mapping records associated with the unresponsive edge servers still valid for DNSSEC validation
 - interrupting end-user's access financial and reputational damage

- DNS and DNSSEC
- Redirection Hijacking in CDNs
- Threat Analysis
- Countermeasures
- Conclusion

DNSSEC Consideration

- against record replay: signing with additional information
 - currently practice: long validity period
 - RSA 30 days; ECDSA: 2 days (Cloudflare)
 - use a short validity period
 - sign the signature expiration
 - increase the difficulty of record injection as the validity cannot be altered
 - adversaries will only have a short window to perform the record injection

CNAME Flattening

- the prevalence of CNAME increases the difficulty of securing the mapping in CDNs
 - CNAME Chain
 dynamic CNAME mapping
- CNAME Flattening
 - hide the CNAME chain from resolvers
 - CDN's authoritative nameservers **act as a resolver** by recursively resolving the CNAME chain and finally construct an A record

CNAME Flattening

www.dell.com	CNAME	www1.dell-cidr.akadns.net
www1.dell-cidr.akadns.net	CNAME	cdn-www.dell.com.edgekey.net
cdn-www.dell.com.edgekey.net	CNAME	cdn-www.dell.com. edgekey.net.globalredir.akadns.net
cdn-www.dell.com. edgekey.net.globalredir.akadns.net	CNAME	e28.x.akamaiedge.net
e28.x.akamaiedge.net	А	104.117.80.33

CNAME Flattening

www.dell.com	CNAME	www1.dell-cidr.akadns.net
www1.dell-cidr.akadns.net	CNAME	cdn-www.dell.com.edgekey.net
edn-www.dell.com.edgekey.net	CNAME	edn-www.dell.com. edgekey.net.globalredir.akadns.net
cdn-www.dell.com. edgekey.net.globalredir.akadns.net	CNAME	e28.x.akamaiedge.net
e28.x.akamaiedge.net	А	104.117.80.33

- DNS and DNSSEC
- Redirection Hijacking in CDNs
- Threat Analysis
- Countermeasures
- Conclusion

/ Conclusion

- Problem: When DNSSEC meets CDN
 - fundamental vulnerability in DNS-based CDNs stemming from the dynamics of DNS mapping records
 - allowing adversaries to manipulate the access of end-users even with DNSSEC signatures (i.e., replay attack)
 - Prevalence of redirection by CNAME
- characterizing the request routing of CDNs
- practical impact: performance degradation, nullifying CDN's benefits
- countermeasures

Thank you!

End-Users Get Maneuvered: Empirical Analysis of Redirection Hijacking in Content Delivery Networks

¹¹ Shuai Hao

