
Intro Reductions Optimizations Evaluation Summary

Dependency-Preserving Data Compaction for

Scalable Forensic Analysis
1

Md Nahid Hossain, Junao Wang, R. Sekar, and Sco� D. Stoller

1
This work was supported by DARPA (contract FA8650-15-C-7561) and in part by NSF (grants

CNS-1319137, CNS-1421893 and CCF-1414078) and ONR (grants N00014-15-1-2208, N00014-15-1-2378

and N00014-17-1-2891). 1 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Long-running A�ack Campaigns on the Increase ...

2 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Motivation

A�acks may be detected a long time a�er

System logs need to be stored for several months or more

Log data can be GBs per day, per host
Enterprises with 1000s of hosts can produce petabytes of data per year

Not just a storage cost: forensic analysis of large data sets can be

painfully slow

Motivates the need for data compaction techniques.

3 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Goals

Work with readily available system-call audit data, e.g., Windows

ETW and Linux audit logs

Fine-grained dependency tracking can improve forensic analysis, but such

tracking is not ready for large-scale deployment.

Reduce data volume without degrading forensic analysis.

Events can be dropped if they don’t change (most) forensic analysis results.

4 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Contributions

Two novel graph-based reduction techniques: Full dependence (FD)

and Source dependence (SD) preservation.

4.6 to 19x reduction on total events.

E�icient algorithms and optimizations for implementing reductions

Can process/analyze about 1M events per second per core

Compact data representation techniques for

o�line storage: 35x smaller on average (before compression)

online analysis: Less than 5 bytes of storage per event in the original data.

5 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Background: Dependence Graphs

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7

8

9

10

11

12

Node: a subject (process) or object (file/network connection).

Edge: timestamped event, oriented in the direction of information flow.

e.g., flow from P to C occurred at t = 3

6 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Forensic Analysis

Backward analysis: Given a suspect

node (C), trace back to the entry

point of a�ack (a.com)

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7

8

9

10

11

12

Forward/Impact analysis: Identify

all nodes potentially compromised

by a suspect node (b.com).

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7

8

9

10

11

12

7 / 44



Intro Reductions Optimizations Evaluation Summary Motivation Contribution Background

Forensic Analysis

Backward analysis: Given a suspect

node (C), trace back to the entry

point of a�ack (a.com)

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7

8

9

10

11

12

Forward/Impact analysis: Identify

all nodes potentially compromised

by a suspect node (b.com).

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7

8

9

10

11

12

8 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Reduction Techniques

9 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Reduction Techniques

Log-based:

Examine a sequence of events

Determine if some of them can be eliminated without altering

dependencies.

Graph-based:

Construct a dependence graph

Use graph reachability to prune redundant events

Can leverage global context for more powerful reductions

10 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Log-based reduction: Run-Merging

Merge successive events if they are identical

(1) A reads F1

(3) A reads F1

(4) B writes F2

(6) B writes F2

11 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Log-based reduction: Run-Merging

Merge successive events if they are identical

(1) A reads F1

(4) B writes F2

12 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Log-based reduction: Run-Merging

Merge successive events if they are identical

(1) A reads F1

(2) B writes F2

(3) A reads F1

(4) B writes F2

(5) A reads F1

(6) B writes F2

Limitation: thrown o� by intervening events. (No reduction possible.)

13 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Log-based reduction: Xu et al [CCS 2016]

Continue merging identical events if intervening events are on di�erent

objects and subjects.

(1) A reads F1

(2) B writes F2

(3) A reads F1

(4) B writes F2

(5) A reads F1

(6) B writes F2

14 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Log-based reduction: Xu et al [CCS 2016]

Continue merging identical events if intervening events are on di�erent

objects and subjects.

(1) A reads F1

(2) B writes F2

Reductions are now restored.

15 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Log-based reduction: Limitations

Lack of global context makes it di�icult to safely merge events in

several common scenarios, e.g., pipes, log-files, etc.

Communication via pipe

P E Q
2

6

4

3

7

5

Xu et al cannot merge (4) with (2) due to outgoing edge from E at (3).

16 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Our Approach: Full Dependence (FD) Preservation

Continue to merge identical events if intervening events don’t alter

global dependence of the event’s source, e.g., node P below.

Before reduction

P E Q
2

6

4

3

7

5

A�er reduction

P E Q[2, 6] [3, 7]

17 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Our Approach: Full Dependence (FD) Preservation

Continue to merge identical events if intervening events don’t alter

global dependence of the event’s source, e.g., node P below.

Before reduction

P E Q
2

6

4

3

7

5

A�er reduction

P E Q[2, 6] [3, 7]

18 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Source Dependence (SD) Preservation

Takes advantage of how forensic analysis is

typically done.

Backtrack from suspect node to a source node

(“entry point”), then perform forward analysis

Need only preserve dependencies from

source nodes

i.e., nodes with no incoming edges

More powerful than FD: can drop all edges

that don’t introduce new dependencies on

source nodes
19 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Source Dependence (SD) Preservation

Takes advantage of how forensic analysis is

typically done.

Backtrack from suspect node to a source node

(“entry point”), then perform forward analysis

Need only preserve dependencies from

source nodes

i.e., nodes with no incoming edges

More powerful than FD: can drop all edges

that don’t introduce new dependencies on

source nodes

F

P P ′ P ′′

F ′

1 2 3

4 5 6

20 / 44



Intro Reductions Optimizations Evaluation Summary Log-based reduction Graph-based reduction

Source Dependence (SD) Preservation

Takes advantage of how forensic analysis is

typically done.

Backtrack from suspect node to a source node

(“entry point”), then perform forward analysis

Need only preserve dependencies from

source nodes

i.e., nodes with no incoming edges

More powerful than FD: can drop all edges

that don’t introduce new dependencies on

source nodes

F

P P ′ P ′′

F ′

1 2 3

4

21 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Optimizations for E�icient Implementation

22 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

E�icient Implementation

Global context is more powerful, but is expensive to compute on

timestamped graphs

Reachability is a function of time, unlike standard graphs

Dependencies cannot be cached and reused

Solution: Convert to a standard graph by versioning all nodes.

Develop optimizations that reduce number of versions by 20x

On average, just 1.26 versions per object or subject

23 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Versioned Graph

Timestamped Graph

F S G T2

3

5

4

6

5

Naive Versioned Graph

S0F 0

S2

G0

G3

G5

T 0

T 4

T 6

24 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Redundant Edge Optimization (REO)

Discard edge from u
to v if there is

already an edge from

the latest version of u
to some version of v .

Naive Versioned Graph

S0F 0

S2

G0

G3

G5

T 0

T 4

T 6

A�er Applying REO Optimization

S0F 0

S2

G0

G3

T 0

T 4

25 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Redundant node optimization (RNO)

Skip new version

generation for sink

nodes (i.e., nodes

with out-degree zero)

Versioned graph with REO optimization

S0F 0

S2

G0

G3

T 0

T 4

A�er applying RNO optimization

F 0 S0,2 G0,3 T 0,4

26 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Cycle-Collapsing Optimization (CCO)

Before adding an edge from a version ur
to vs

, if there is a cycle

involving u and v , then:

Combine the two nodes into a “supernode” representing an

equivalence class

Discard future edges between combined nodes

27 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Optimized Versioned Graph

Timestamped Graph

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7
8

9

10

11

12

Optimized Versioned Graph

a.com b.com

P1 P4 Q

C L

E

28 / 44



Intro Reductions Optimizations Evaluation Summary Redundant Edge Redundant Node Cycle-collapsing

Optimized Versioned Graph

Timestamped Graph

a.com b.com

P Q

C L

E
1

2

3

4

5

6

7
8

9

10

11

12

Optimized Versioned Graph

a.com b.com

P1 P4 Q

C L

E

29 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Experimental Evaluation

30 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Evaluation Dataset

Dataset from DARPA Transparent

Computing Program’s 2
nd

adversarial engagement

Data from Windows and Linux desktop

systems over 7 days.

Benign background activity, plus a�acks

involving full APT life-cycle.

Data from our lab servers (Linux).

Benign use over 7 days.

Dataset Size

Linux Desktop 12.9 GB

Windows Desktop 2.1 GB

SSH/File Server 6.7 GB

Web server 1.3 GB

Mail server 1.2 GB

31 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Data Size (Millions of events)

32 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Reduction Factor

Average:

Xu et al: 1.8x

FD: 7.8x

SD: 10.2x

33 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Average No. of Versions per node

34 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Total Size on Disk (GB)

Factor of

decrease:

FD: 35.3x

SD: 41.4x

35 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Dependence Graph Size (MB)

Total memory use across all 5 data sets (about 100M events originally)

36 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

(Preliminary) Results on DARPA 3
rd

Engagement

Dataset about 10x larger

Linux Desktop: 800M events, reduced by 70x using FD.

Windows Desktop: 70M events, reduced by 10x using FD.

Data size and several other di�erences between the two auditing systems

contributed to the large di�erence in reduction rates.

Summary: Larger data sets o�er more opportunities for reduction

Long running processes experience extended periods without new dependencies.

During these periods, FD eliminates most operations.

37 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Impact of Reduction on Forensic Analysis

38 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Do reductions interfere with forensic analysis?

In theory: We prove that

FD preserves forward/backward analysis results for all nodes.

SD preserves forward/backward analysis results for source nodes.

In practice: We evaluated during the DARPA adversarial exercise

We had no prior knowledge about a�acks

Performed forensic analysis in real-time on FD-reduced

dependence graph stored in main memory

Analysis triggered when our Sleuth [Sec 2017] system flagged a

suspicious event.

39 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Example Graph Constructed a�er Analysis

40 / 44



Intro Reductions Optimizations Evaluation Summary Dataset Reduction Forensic Analysis

Forensic analysis with and without Reductions

Dataset

A�ack

Scenario

Analysis

Type

Number of Entities

Base FD SD

Linux

Desktop

A

Backward 7 7 7

Forward 15 15 15

B

Backward 3 3 3

Forward 10 10 10

Windows

Desktop

A

Backward 4 4 4

Forward 17 17 17

B

Backward 2 2 2

Forward 9 9 9

C

Backward 4 4 4

Forward 7 7 7

41 / 44



Intro Reductions Optimizations Evaluation Summary

Related Work

LogGC [CCS 2013], ProTracer [NDSS 2016], MPI [Sec 2017]:

Specialized for their fine-grained flow tracking system

We target coarse-grained auditing, which can be deployed in large enterprises

Xu et al [CCS 2016]: Log-based reduction uses only local context, is

unable to achieve the kind of reductions we get using global context.

Others

Provenance collection techniques (e.g., PASS [ATC 2006]) incorporate

run-merging, plus cycle detection/avoidance techniques.

ProvWalls [TOIT 2017] describes reductions for MAC systems.

Many other related works discussed in the paper.

42 / 44



Intro Reductions Optimizations Evaluation Summary

Summary

Developed highly e�ective reduction techniques for audit logs.

FD and SD achieve 5x to 19x reduction in the number of events

Developed e�icient algorithms and optimizations for FD and SD

Our techniques can process and analyze about 1M events per second per host.

Presented compact data representation techniques to achieve over

an order of magnitude reduction in storage and main memory sizes.

Thank you! �estions?

43 / 44



Intro Reductions Optimizations Evaluation Summary

Summary

Developed highly e�ective reduction techniques for audit logs.

FD and SD achieve 5x to 19x reduction in the number of events

Developed e�icient algorithms and optimizations for FD and SD

Our techniques can process and analyze about 1M events per second per host.

Presented compact data representation techniques to achieve over

an order of magnitude reduction in storage and main memory sizes.

Thank you! �estions?

44 / 44


	Intro
	Motivation
	Contribution
	Background

	Reductions
	Log-based reduction
	Graph-based reduction

	Optimizations
	Redundant Edge
	Redundant Node
	Cycle-collapsing

	Evaluation
	Dataset
	Reduction
	Forensic Analysis

	Summary

