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Why is in-process memory isolation a good idea?
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Shadow Stack

• Backup return addresses

• Address gets restored before ret is called

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

Return Address

′

′



Shadow Stack

• Backup return addresses

• Address gets restored before ret is called

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

′

′



Shadow Stack

• Backup return addresses

• Address gets restored before ret is called

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

Shadow Stack 
begins at 

0xcafecafe
Return Address

′

′



Our Contribution

Complete pipeline from compiler down to hardwareMemory isolation primitive

PoC implementation Implemented compiler support & use case

Thorough evaluation Compared high-frequency memory domain switching
performance to related work
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• Entropy-based: 
single information leak 
breaks isolation

Problems

• Excessive instrumentation

• High performance overhead

Problems

• High performance overhead 
for frequent switches



What characteristics should a memory isolation primitive have?
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Related Work

Goal: build a practical primitive that incorporates all aspects

Technique Policy-based Isolation Hardware
Enforced

Fast Interleaved
Access

Fails Safe

SFI [1] ✔ ❌ ✔ ❌

Segmentation only for x86-32 ✔ ✔ ✔

Memory Hiding ❌ ❌ ✔ ❌

Paging / EPT only single-threaded applications ✔ ❌ ✔

Intel MPK ✔ ✔ ❌ ✔

Intel SGX ✔ ✔ ❌ ✔

Intel MPX ✔ ✔ (✔) ❌

Intel CET only for Shadow Stack ✔ ✔ ✔

[1] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and B. Chen. 
Adapting software fault isolation to contemporary cpu architectures. In 18th USENIX Security Symposium, USENIX Sec, 2010.



Our Solution: IMIX

• Hardware-enforced in-process memory isolation

• Isolation primitive for mitigations at page granularity

• Two separate memory realms

• smov instruction to load/store sensitive data

• mov instruction for regular memory
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Related Work
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Fails Safe

SFI [1] ✔ ❌ ✔ ❌

Segmentation only for x86-32 ✔ ✔ ✔
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IMIX in Action: Shadow Stack Revisited

• IMIX isolates Shadow Stack 
deterministically

• Exclusively use smov for Shadow Stack
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Implementation

Clang

LLVM Extension

mprotect(page, 
PROT_IMIX)

User Program

mov i, rcx

smov i,  rcx

smov s, rcx

mov s, rcx

C/C++ 
Source

smov-based load/store 
for compiler IR



Page table bit to mark page
sensitive
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Use-Case Evaluation: CPI

• CPI [2] prevents code-reuse attacks

• Move Code pointers and indirect code 
pointers to safe region → integrity

• BUT: safe region is only hidden – exploited 
by Evans et al. [3]

jmp 0x0(gs)

FUNC A

Code

…

CPI Metadata

&FUNC A
gs

[3] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing 
the point(er): On the effectiveness of code pointer integrity. In 36th IEEE Symposium on Security and Privacy, S&P, 2015.

[2] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer integrity. In 11th USENIX Symposium on 
Operating Systems Design and Implementation, OSDI, 2014.



Use-Case: CPI - Replace Hiding with IMIX

• CPI evaluated different approaches for safe region protection

• Benefit: highly-modular implementation

• Added IMIX memory allocation

• Changed register-offset addressing to direct accesses
mov 0x40(gs), ptr smov 0xcafecafe+0x40, ptr



Evaluation: CPI using IMIX
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Conclusion

• IMIX is the first practical solution for in-process memory isolation

• Isolation is enforced at page granularity

• Existing approaches cannot be leveraged for CFI/CPI



Future Work

Can IMIX be adapted to protect the complete memory pipeline?

Are there new mitigation approaches that IMIX enables?
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