
Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, Ahmad-Reza Sadeghi

Technische Universität Darmstadt

IMIX: Hardware-Enforced
In-Process Memory Isolation

IMIX

Application

Mitigation’s Safe
Region

App Code

Mitigation’s Safe
Region

Mitigation Code

Application

Mitigation’s Safe
Region

App Code

Mitigation Code

State of the Art
IMIX

Memory Isolation

Why is in-process memory isolation a good idea?

Inter- & In-Process Isolation

App

Operating System

Hardware

App App

Inter-Process Isolation enforced by OS

Inter- & In-Process Isolation

Application

App

Operating System

Hardware

App App

Inter-Process Isolation enforced by OS

Memory

CodeCode

Memory

Code

Inter- & In-Process Isolation

Application

App

Operating System

Hardware

App App

Inter-Process Isolation enforced by OS

Memory

CodeCode

In-Process Isolation

Shadow Stack

• Backup return addresses

• Address gets restored before ret is called

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

Return Address

′

′

Shadow Stack

• Backup return addresses

• Address gets restored before ret is called

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

′

′

Shadow Stack

• Backup return addresses

• Address gets restored before ret is called

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

Shadow Stack
begins at

0xcafecafe
Return Address

′

′

Our Contribution

Complete pipeline from compiler down to hardwareMemory isolation primitive

PoC implementation Implemented compiler support & use case

Thorough evaluation Compared high-frequency memory domain switching
performance to related work

In-Process Isolation

Memory Protection Keys
e.g., Intel PKU

0xabcd

…

0x1234

…W

-

R

R

MemoryPermission
Table

write

Randomization

0xbeef

Base Register

0xabcd
…

…
…

Memory

read [reg+192]

Hardware Bounds Checking
e.g., Intel MPX

Bounds Check
0x123ab

…

0x1234

Problem

In-Process Isolation

Memory Protection Keys
e.g., Intel PKU

0xabcd

…

0x1234

…W

-

R

R

MemoryPermission
Table

write

Randomization

0xbeef

Base Register

0xabcd
…

…
…

Memory

read [reg+192]

Hardware Bounds Checking
e.g., Intel MPX

Bounds Check
0x123ab

…

0x1234

Problem
Problems

• Entropy-based:
single information leak
breaks isolation

Problems

• Excessive instrumentation

• High performance overhead

Problems

• High performance overhead
for frequent switches

What characteristics should a memory isolation primitive have?

Related Work

Policy-based Isolation Hardware

Enforced

Fast Interleaved

Access

Fails Safe

Related Work

Goal: build a practical primitive that incorporates all aspects

Technique Policy-based Isolation Hardware
Enforced

Fast Interleaved
Access

Fails Safe

SFI [1] ✔ ❌ ✔ ❌

Segmentation only for x86-32 ✔ ✔ ✔

Memory Hiding ❌ ❌ ✔ ❌

Paging / EPT only single-threaded applications ✔ ❌ ✔

Intel MPK ✔ ✔ ❌ ✔

Intel SGX ✔ ✔ ❌ ✔

Intel MPX ✔ ✔ (✔) ❌

Intel CET only for Shadow Stack ✔ ✔ ✔

[1] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and B. Chen.
Adapting software fault isolation to contemporary cpu architectures. In 18th USENIX Security Symposium, USENIX Sec, 2010.

Our Solution: IMIX

• Hardware-enforced in-process memory isolation

• Isolation primitive for mitigations at page granularity

• Two separate memory realms

• smov instruction to load/store sensitive data

• mov instruction for regular memory
Code

Sensitive Data

Run-Time Defense
Metadata

Application

IMIXIMIX

IMIX

W⨁X

Related Work

Technique Policy-based Isolation Hardware
Enforced

Fast Interleaved
Access

Fails Safe

SFI [1] ✔ ❌ ✔ ❌

Segmentation only for x86-32 ✔ ✔ ✔

Memory Hiding ❌ ❌ ✔ ❌

Paging / EPT only single-threaded applications ✔ ❌ ✔

Intel MPK ✔ ✔ ❌ ✔

Intel SGX ✔ ✔ ❌ ✔

Intel MPX ✔ ✔ (✔) ❌

Intel CET only for Shadow Stack ✔ ✔ ✔

IMIX ✔ ✔ ✔ ✔

IMIX in Action: Shadow Stack Revisited

• IMIX isolates Shadow Stack
deterministically

• Exclusively use smov for Shadow Stack

Buffer

Parameters

……
Malicious Input

Return AddressReturn Address

FUNC A

FUNC B

Code

Stack

…

Shadow Stack

Return Address
0xcafecafe

Shadow Stack
begins at

0xcafecafe

IMIX

mov

sm
o

v

Implementation

Clang

LLVM Extension

mprotect(page,
PROT_IMIX)

User Program

mov i, rcx

smov i, rcx

smov s, rcx

mov s, rcx

C/C++
Source

smov-based load/store
for compiler IR

Page table bit to mark page
sensitive

PT-bit management for Kernel

Implementation

OS Kernel

Page permissions

Memory

Page Tables

IMIX bit

Normal Memory

Protected Memory

i: 0x18192021

s: 0x39404142

Implementation

OS Kernel

Page permissions

CPU

Core MMU

smov
check

smov

Memory

Page Tables

IMIX bit

Normal Memory

Protected Memory

i: 0x18192021

s: 0x39404142

ISA extension & MMU check

Implementation

OS Kernel

Page permissions

CPU

Core MMU

smov
check

smov

Memory

Page Tables

IMIX bit

Normal Memory

Protected Memory

i: 0x18192021

s: 0x39404142

Clang

LLVM Extension

mprotect(page,
PROT_IMIX)

User Program

mov i, rcx

smov i, rcx

smov s, rcx

mov s, rcx

C/C++
Source

Use-Case Evaluation: CPI

• CPI [2] prevents code-reuse attacks

• Move Code pointers and indirect code
pointers to safe region → integrity

• BUT: safe region is only hidden – exploited
by Evans et al. [3]

jmp 0x0(gs)

FUNC A

Code

…

CPI Metadata

&FUNC A
gs

[3] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing
the point(er): On the effectiveness of code pointer integrity. In 36th IEEE Symposium on Security and Privacy, S&P, 2015.

[2] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2014.

Use-Case: CPI - Replace Hiding with IMIX

• CPI evaluated different approaches for safe region protection

• Benefit: highly-modular implementation

• Added IMIX memory allocation

• Changed register-offset addressing to direct accesses
mov 0x40(gs), ptr smov 0xcafecafe+0x40, ptr

Evaluation: CPI using IMIX

1,00

10,00

100,00

CPI+Seg - CPI+IMIX -
CPI+MPK - CPI+MPX -

Perf.
Overhead
[%]

Conclusion

• IMIX is the first practical solution for in-process memory isolation

• Isolation is enforced at page granularity

• Existing approaches cannot be leveraged for CFI/CPI

Future Work

Can IMIX be adapted to protect the complete memory pipeline?

Are there new mitigation approaches that IMIX enables?

Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, Ahmad-Reza Sadeghi

Technische Universität Darmstadt

IMIX: Hardware-Enforced
In-Process Memory Isolation

